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In this file we report many technical details that were omitted from the paper published in The Clinical 

Neuropsychologist (July 2017). In any publication, please cite: 

Toraldo A, Romaniello C, Sommaruga P (2017). Measuring and diagnosing neglect: a standardized statistical 

procedure. The Clinical Neuropsychologist, 31 (6-7), 1248-1267. DOI: 10.1080/13854046.2017.1349181 

 

The paper’s Figures 1 and 2 are also included in the present text. They are numbered WM-1 and WM-2 here (WM 

stands for ‘Website Material’). 

 

The ‘Worksheet’ we often refer to is the ‘MPH neglect diagnosis’ piece of Excel software that performs neglect 

diagnosis and which can be downloaded from this same Website: 

psicologia.unipv.it/toraldo/mean-position-of-hits.htm. 
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In the following Section we wished to clarify the logic applied when identifying an optimal index of neglect. A 

very basic feature of any type of measurement is a classification which attributes the same degree of the to-be-

measured property to a set of measured objects; these sets which are internally homogeneous for the measured 

quantity are called ‘equivalence classes’. Hence we wished to argue that there are indeed ‘equivalence classes of 

neglect’, i.e. families of different performances that can be stated to reflect an identical degree of neglect.  

 

1. EQUIVALENCE CLASSES OF NEGLECT 

In order to define behavioural classes sharing the same degree of neglect, we need to describe a patient’s 

performance in a complete way. We reasoned that a full description of a patient’s performance is a function relating 

position (in X) to Hit rate (in Y). We will imply that X is the position along the horizontal axis in most examples, 

but identical considerations hold for any other spatial dimension. There are a number of suitable equations for the 

XY relationship, for instance the Cumulative Gaussian distribution or logistic curves (as are those depicted in Fig. 

WM-1). Logistic curves have a sigmoidal shape, two asymptotes, Hit rate = 0 and 1, an inflection point at Hit rate = 

.5, and are characterized by two parameters, the slope s of the function and the horizontal location of the inflection 

point (l). However we need to add another parameter, the height of the upper asymptote (ceiling, c) – indeed while 

classical logistic curves have Y=0 and Y=1 as asymptotes, on a visual search task a subject might well have a top 

Hit rate lower than 1. Note that we are not just speaking of the part of the curve lying in the tested horizontal 

interval (the display) – the logistic curve has an X domain extending from –∞ to +∞, thus, for instance, the height Y 

of a curve whose upper asymptote c equals 1 might well vary between 0 and .7 in the display. Also note that if one 

takes a curve and changes the ceiling parameter, the asymptote moves from 1 to, say, .8 and ‘compresses’ the curve 

downwards. In this way the curve becomes shallower, but, mathematically, the slope parameter s does not change, 

because s is the rate at which the drop from the ceiling (not from 1) to zero occurs. In other words s (which we 

could name ‘standardized slope’) is the slope one would visually observe by de-compressing any curve so that its 

upper asymptote is exactly 1. Thus when we speak of ‘slope’ all across the paper, we refer to the s parameter, and 

not to the apparent slope visible in a plot. 

As for the lower asymptote (floor), this is assumed to be zero – the implications of such an assumption will be 

discussed later. 

If any patient’s performance can be summarized by a logistic curve, it will then vary by those three parameters. 

Hence patients can differ from one another in terms of s, l or c. Figure WM-1 shows patients varying only for l (A, 

B, C), or only for s (D, E, F), or only for c (G, H, I) – the latter set of patients have the same standardized slope, s.
1
 

The critical step here is to decide whether or not changes in one specific parameter correspond to changes in 

neglect severity. As we shall see, our view is that changes in the s and l parameters correspond to changes in 

neglect severity, while changes in c must be assumed not to reflect changes in neglect. 

Our first two statements are based on the ‘pre-theoretical’ intuition that patients A-B-C (varying only for l) have 

increasing neglect severity, and that patients D-E-F (varying only for s) have decreasing neglect severity. By ‘pre-

theoretical’ we mean that all students of neglect would agree on this – or, in other words, that all neglect theories 

would agree on such a classification. Thus patient A produces omissions that are much more confined to the left 

side than are omissions by C, and patient F shows no lateral bias – no neglect – with respect to patient D who 

shows marked neglect. 

 

                                                 

1 Another way of explaining the meaning of the three parameters is by thinking of the curve relating space to Hit rate as a Cumulative 

Gaussian distribution (CG), and by considering the Original Gaussian (OG) that generated it. OG has three parameters: mean (l), standard 

deviation (s) and ‘weight’ (c). The mean can be anywhere – thus a perfect 100% performance corresponds to an OG at ∞ on either side, well 

out of the spatial interval tested empirically. Weight is how ‘heavy’ OG is, 0 to 1 – in terms of the CG, weight corresponds to the superior 

asymptote (c, the ceiling), i.e. the top Hit rate that the subject would achieve at ±∞. Considering the OG distribution, Patients A, B and C 

vary only for the mean (l); patients D, E and F vary only for the standard deviation (s); patients G, H and I vary only for the weight (c). 
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Our reasoning on parameter c (varying between patients G-H-I) is less straightforward, perhaps, but has a clear-cut 

conclusion. The c parameter is certainly influenced by deficits that are different from neglect – deficits that do not 

produce lateral biases (hence the name ‘non-lateral’ deficits) and that lower the Hit rate in an identical way all 

across spatial positions. If we assumed that neglect severity can also vary with c we would be stating that telling the 

effects of neglect from those of non-lateral deficits would be impossible – thus invalidating all tasks of this type as 

diagnostic of neglect. Hence the assumption that c does not reflect neglect severity in any way, is mandatory: 

anyone giving up such an assumption would be giving up all neglect tests yielding the Hit/Miss-by-position data 

from, that is, the vast majority of neglect tests. 

So we are left with two relevant parameters, l and s. We cannot choose one of them as an ideal measure of neglect 

severity because it would fail to detect differences in neglect severity due to the other one. Moreover, both 

parameters have undesirable mathematical features (they both range from ∞ to +∞, and normal subjects would 

have huge scalar values for both of them). The Mean Position of Hits, MPH, has the lucky property of combining 

information from l and from s (it depends on both: Fig. WM-1, A-C, D-F) and of having an intuitive and limited 

range (the space of the display). 

 

It is important to highlight here that the choice of looking at the variation of a single parameter at a time was a 

deliberate simplification. A complete analysis would have looked also at simultaneous variations in multiple 

parameters – with new equivalence classes and neglect severity orders. However (i) joint variation produces a 

virtually infinite number of combinations, and (ii) organizing these combinations in neglect severity orders and 

equivalence classes would be impossible to do pre-theoretically, that is, without reference to a specific cognitive / 

computational / neurophysiological model of neglect. Since we aimed at developing a method with general validity 

(i.e. not contingent on any specific neglect theory), we decided to limit our analysis to the simplified framework 

exposed above. 

In the following Section we report the results of the Monte-Carlo simulations which were used to choose the best 

index of neglect among the measures of central tendency of the distribution of Hits across physical space. 

 

2. WHICH MEASURE OF CENTRAL TENDENCY OF THE HIT DISTRIBUTION HAS THE BEST 

STATISTICAL PROPERTIES? 

We ran a set of Monte Carlo simulations of Hit sample distributions in virtual subjects without neglect (i.e. with a 

perfectly flat function relating spatial position to Hit rate) and with various degree of non-lateral deficits (i.e. with 

Hit rate varying all across the 0-1 range), in tasks with 10, 20, 50, 100 or 150 targets distributed in a perfectly 
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Figure WM-1 Physical position ranging from -.5 
(leftmost target) to .5 (rightmost target) is plotted 
against Hit rate (0-1) for nine imaginary patients. 
Triangles along the plots’ horizontal axes show the 
Mean Position of Hits (MPH): black, relative to the 
black solid curve; white, relative to the dashed curve; 
grey, relative to the grey curve. MPHs are identical in 
patients G-H-I, so the triangles overlap. Circles along 
the plots’ upper borders show the Mean Position of 
Omissions (MPO) – colour conventions as before.
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equispaced fashion along the horizontal axis. Each simulation generated 10,000 samples. Sample distributions of 

MPH, MdnPH (Median Position of Hits) and Mid-Range (the midpoint between the two extreme hits) were studied 

according to their standard deviation (SD) and Kurtosis as an index of gaussianity. Mean and Skewness values of 

such distributions were not studied as they were invariably zero (an expected result, given that all virtual subjects 

were free of lateral bias). 
 

T-> 10 10 10 150 150 150 

H MPH MdnPH Mid-Range MPH MdnPH Mid-Range 

1 .319 .319 .319       

2 .213 .213 .213 
   3 .163 .219 .154 .168 .224 .159 

4 .132 .165 .119 
   5 .107 .155 .091 
   6 .087 .121 .070 
   7 .070 .106 .053 
   15 

   
.072 .116 .041 

30 
   

.047 .078 .020 

45 
   

.036 .062 .013 

60 
   

.029 .049 .009 

75 
   

.024 .041 .007 

90 
   

.019 .033 .005 

105 
   

.016 .027 .004 

120 
   

.012 .020 .003 

135 
   

.008 .014 .002 

147       .003 .006 .001 

Table WM-1 Standard deviation of sample distributions (simulated with N=10,000) of 
MPH, MdnPH, Mid-Range with T=10 or 150. The lower the standard deviation, the more 
efficient the estimator. 

 
 

T-> 10 10 10 150 150 150 

H MPH MdnPH 
Mid-

Range MPH MdnPH 
Mid-

Range 

1 1.222 1.222 1.222       

2 .664 .664 .664 
   3 .457 .931 .168 .394 .858 .146 

4 .398 .713 .106 
   5 .337 .840 .509 
   6 .373 .739 .610 
   7 .460 .931 .905 
   15 

   
.034 .275 1.558 

30 
   

.059 .129 2.496 

45 
   

.049 .080 2.885 

60 
   

.032 .091 3.402 

75 
   

.053 .148 2.815 

90 
   

.037 .024 3.150 

105 
   

-.008 .079 3.309 

120 
   

.073 .158 4.156 

135 
   

.044 .165 6.513 

147       .466 .677 27.443 

Table WM-2 Kurtosis of sample distributions (simulated with N=10,000) of MPH, MdnPH, 
Mid-Range with T=10 or 150. Zero expresses perfect gaussianity, negative values 
characterize platykurtic distributions, positive values leptokurtic distributions. 
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Table WM-1 shows the standard deviations of sample distributions (N=10,000 each) of MPH, MdnPH and Mid-

Range. Mid-Range is the most efficient estimator of central tendency, because it systematically has the lowest 

standard deviation; MPH has intermediate efficiency, and MdnPH is the worst in this respect. 

This high-efficiency of Mid-Range was expected on grounds of its statistical properties: Mid-Range is known for 

being the most efficient central tendency estimator for Uniform Distributions; our case does indeed resemble a 

sampling from a Uniform Distribution. However, Mid-Range also has some serious drawbacks. The first is that its 

distribution can be critically removed from gaussianity. Table WM-2 shows that the Kurtosis of Mid-Range 

increases very steeply as the Hits count increases. This huge leptokurticism is due to an undesirable property of 

Mid-Range: when Hit rate is relatively high, the leftmost and rightmost Hits tend very often to be the leftmost an 

rightmost targets – so Mid-Range will necessarily be zero (the display’s midpoint) in all these cases, and in spite of 

variation in the Hit rate anywhere else. By contrast, MPH and MdnPH have much quieter Kurtosis, with values 

between .5 and 0 (when both Hit and Omission counts are at least 3). This means that the standard Gaussian 

distribution can safely be used to compute p-values if MPH or MdnPH are used, while this is definitely not the case 

for Mid-Range. The other drawback of Mid-Range is linked to the first, and is the following. Because Mid-Range 

just considers the leftmost Hit and the rightmost Hit, patients with mild neglect would very often be misdiagnosed 

as normal, namely, in all cases where they detect the leftmost target even though they miss some, even many other 

targets in the left half of the display. To clarify this point, we simulated 100 performances by patients with mild 

neglect on a 50-target detection task. In the simulation, detection probability was 50% for the leftmost target, then 

it gradually increased in +2.5% steps, till it reached 100% in position 21/50. By using MPH, neglect was correctly 

diagnosed in 96/100 patients, thus estimating test sensitivity to be 96%. As for Mid-Range, clearly about half the 

patients would have detected the leftmost target; these same patients, of course, would have invariably detected the 

rightmost target, thus fixing Mid-Range at perfect normality, exactly halfway across the display. Hence test 

sensitivity would have been at most 50%, and probably less. Thus, Mid-Range not only has a very irregular 

distribution shape, it also has disastrously low diagnostic sensitivity in cases of mild neglect.
2
 Therefore we 

rejected Mid-Range, and preferred MPH over MdnPH because it is more efficient (Table WM-1). 

In the following Section, we define and discuss a full list of the assumptions that make our statistical model for 

diagnosing neglect a valid mathematical tool, that is, a technique with nominal false-positive rates (5% or 2% or 

any other desired value). 

3. LIST OF ASSUMPTIONS OF THE STATISTICAL MODEL 

 

3.1. Assumptions concerning MPH as an estimator of true neglect severity 

We conceptualized true neglect severity as the unknown mean ν of the distribution whose probability density 

function is the Hit rate logistic curve in the space ranging from .5 (leftmost target) to .5 (rightmost target; 

examples of the curve are shown in Fig. WM-1). MPH is an asymptotically unbiased estimator of ν (i.e. the mean 

MPH equals ν when the number of target positions = +∞)
3
 if the following assumptions hold. 

 

The first assumption concerns the shape of the logistic curve. 

(1) The logistic curve is driven by three parameters: slope, location and upper asymptote, or ‘ceiling’ (see above). 

The lower asymptote, or ‘floor’ is assumed to be zero (3-parameter curve). 
 

Another two assumptions regard the homogeneity of the distribution of targets across the display. 

(2) Targets occupy positions that are equispaced along the studied spatial dimension (‘equispacing’). 

(3) Each position hosts an equal number of targets (‘ties homogeneity’). 

 

                                                 

2 Mid-Range would indeed be the best measure if neglect had been a clear-cut deficit like visual scotomas, producing a high Hit rate in a 

portion of the display, and a zero Hit rate anywhere else, with a very abrupt change at the boundary between the two regions. In these 

conditions Mid-Range would work optimally, as it is known to be the best estimator of Uniform Distributions’ means when the external 

boundaries’ positions are unknown. In the case of clear-cut neglect the position of the contralesional boundary would indeed be unknown. 

However, neglect is seldom a clear-cut phenomenon, and graded deficit distributions are far more common. 
3 This holds, exactly, if positions are equispaced and all of them have an identical number of targets. 
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(4) The studied spatial dimension does not covary with any other behaviourally important variable (‘univocal 

interpretation’). 

 

3.2. Assumptions concerning MPH’s distributional shape and variability 

An asymptotically unbiased estimator of true neglect level ν is not enough for diagnosis: we also need to know the 

shape and the variability of its distribution under the null hypothesis – these will determine statistical significance 

(false positive rate) and test power (diagnostic sensitivity). The model’s assumption in this respect is the following. 

(5) In a given normal subject or brain-damaged patient without neglect
4
, all targets have exactly the same 

probability of being detected, no matter their nature or position (‘isoprobability’ or ‘no lateral bias’ assumption). 

For instance, all the bells in the Bells test (Gauthier et al., 1989) are assumed to have equal probability of being 

found by a given normal subject; different normal subjects can have different probabilities of finding bells, but 

within a subject that probability is constant. A patient without neglect might have a markedly low probability to 

correctly process a bell (e.g. because of amblyopia, agnosia, low motivation, etc.) but again, such a probability 

would be equal for all bells. 

 

In the following Section we describe the Monte-Carlo study on MPH which led to the derivation of the statistical 

model and Equation. 

 

4. MONTE CARLO SIMULATIONS AND MODEL EQUATION 

Given assumptions (1), (2), (3) and (5) above, how exactly will MPH vary across repetitions of the same test, if no 

neglect is present? 

The sample distribution of MPH under the null of no neglect certainly has 0 mean and is symmetrical; however, we 

are not aware of any analytical formula to describe its shape (Kurtosis) and its standard deviation (MPH). To 

understand how Kurtosis and MPH behave, we ran large sets of simulations. We varied the overall number of 

targets, T, in a range that covers most experimental and clinical tests: T=10, 20, 50, 100, 150, and the absolute 

number of hits, H = 1, 2, 3, .1T, .2T, .3T, .4T, .5T, .6T, .7T, .8T, .9T, T3, T2, T1. Variations in Hit rate are 

contained in this set, as Hit rate = H/T. We obtained 10,000 samples for each combination. 

                                                 

4 We mean, patients in whom the spatial processing stages that we are wishing to measure are intact. 
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Technically, in each simulation we obtained the conditional distribution of MPH given a fixed T and a fixed H. 

Thus for instance, with T=100 and H=20 we randomized the positions of 20 Hits across 100 targets, computed the 

MPH, and repeated the procedure 10,000 times. The result is the distribution of MPHs that a subject without spatial 

biases who detects exactly 20/100 targets would obtain by repeating the experiment many times. 

 

The good news was that the shape of MPH distribution was satisfactorily close to Gaussian provided that there 

were at least 3 Hits and 3 Omissions – by ‘satisfactorily’ we mean that the absolute Kurtosis parameter was 

estimated to be less than .5 (see Table WM-3). 

 

  

Parameter 

  

 Kurtosis 

 
Targets 10 20 50 100 150 10 20 50 100 150 

Hits 1 .319         1.222         

  2 .213 
   

  .664 
   

  

  3 .163 .166 .166 .166 .168 .457 .371 .38 .393 .394 

  4 .132 .14 
  

  .398 .322 
  

  

  5 .107 
 

.127 
 

  .337 
 

.281 
 

  

  6 .087 .108 
  

  .373 .234 
  

  

  7 .07 
   

  .46 
   

  

  8   .086 
  

    .266 
  

  

  10   .07 .084 .088     .127 .096 .177   

  12   .057 
  

    .24 
  

  

  14   .045 
  

    .225 
  

  

  15   
 

.065 
 

.072   
 

.103 
 

.034 

  16   .035 
  

    .352 
  

  

  17   .029 
  

    .476 
  

  

  20   
 

.052 .058     
 

.02 .047   

  25   
 

.042 
 

    
 

.048 
 

  

  30   
 

.034 .045 .047   
 

.037 .04 .059 

  35   
 

.028 
 

    
 

.072 
 

  

  40   
 

.021 .036     
 

.192 .049   

  45   
 

.014 
 

.036   
 

.249 
 

.049 

  47   
 

.011 
 

    
 

.435 
 

  

  50   
  

.029     
  

.015   

  60   
  

.024 .029   
  

.004 .032 

  70   
  

.019     
  

.006   

  75   
   

.024   
   

.053 

  80   
  

.015     
  

.001   

  90   
  

.01 .019   
  

.142 .037 

  97   
  

.005     
  

.406   

  105   
   

.016   
   

.008 

  120   
   

.012   
   

.073 

  135   
   

.008   
   

.044 

  147         .003         .466 

Table WM-3 Standard deviations (σ) and Kurtosis of sample distributions (simulated with N=10,000) of MPH as a function 
of number of Targets and number of Hits. Kurtosis values in bold (i.e. whose modulus was higher than .5) were assumed 
to indicate serious departures from gaussianity.  

 

The expected, bad news is that the MPH changes dramatically as a function of T and, especially, as a function of Hit 

rate, H/T (see Fig. WM-2). The relationship between T and MPH is a simple one, and is perfectly described by the 

Central Theorem of Limits (CTL): MPH shrinks as a function of the square root of T. MPH also shrinks as a 
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function of H: trivially, the mean position of, say, 5 Hits is much more variable than the mean position of 50 Hits. 

However, the equation of this reduction is not obvious, and does not look like a simple CTL. The reason is the 

following. We would have obtained a perfect CTL situation if the position of a Hit had been completely 

independent of the position of any other Hit, that is, if a Hit had been ‘free’ to occur at any position in the field of 

targets, irrespective of the position of other Hits. However, this is not the case in neglect tests: positions of targets 

are manipulated by the experimenter and are not the effect of random sampling. Most typically, the experimenter 

administers a homogeneous field of target positions, and if targets in a position have already been hit, that position 

will not be (or will be less frequently) available to be hit again: further hits will be forced, or more likely, to occur 

elsewhere.
5
 This constraint on the position of a Hit is very mild with just a few Hits, and very severe with many 

Hits. More exactly, the constraint is totally absent when H=1: a single Hit is completely free to occur anywhere in 

the field of targets (indeed in this situation the distribution is a perfect Discrete Uniform, with analytically known 

parameters), and maximal when there is only one position left, i.e., when H=T1: here a Hit will be forced to occur 

in the only residual position. Hence the  curve closely follows the CTL for very small H, and drops towards zero 

as H increases – till it gets exactly at zero, of course, when all targets have been detected (H=T). 

 

We searched for an equation that could predict the value of MPH as a function of T and of Hit rate (H/T) – a 

complex guesswork as to what exact shape in any component would produce a satisfactory fit. At the end of the job 

we did obtain an equation which provided a very good fit (Fig. WM-2). Equation 1 was derived from the CTL 

applied to both H and T factors, and including the analytic formula for MPH in the liminal case H=1, obtained from 

the Discrete Uniform Distribution, that is, D = [(T
2
1)/12]

1/2
/(T1): 

  

𝜎𝑀𝑃𝐻 =
𝐶𝐹[𝑇(1−𝑊)]√(1502−1)

3𝐻

300(𝑇−1)
        [Equation 1]  

 

W was the weighting factor used to account for the dependence between Hits positions, which increases with H 

(Equation 2); its best-fit scalar values were: j = 1.155, k = .56, m = .563. 

 

𝑊 = 𝑗 (
𝐻

𝑇
)

3

+ 𝑘 (
𝐻

𝑇
)

2

+ 𝑚 (
𝐻

𝑇
) −

𝑗+150𝑘+1502𝑚

1503   [Equation 2]  

 

CF is a further correction term that takes into account possible repetitions of the same horizontal positions during 

the test – e.g., a same target position might be presented multiple times during the testing session, or, in a 

cancellation task there might be targets that are vertically aligned, thus having exactly the same horizontal position. 

An additional set of simulations could show that if a set of T targets is organized in G clusters of T/G repeated 

positions each, and again the positions are in an equispaced array, then MPH is higher – up to 1.7 times higher – 

than when the T targets are not clustered. In the simple case with a single Hit, if all the T targets are clustered in 

two only groups – two only positions, MPH  = .5. We used this fact to obtain what we called the Clustering Factor, 

CF = (.5/Dq1)x
2
 + qx + 1; in it, x is a measure of the degree of clusterization, going from 0, no clusterization, to 

1, maximal clusterization (2 only clusters): x = 2(TG)/[G(T2)]; D is defined above; the best-fit scalar value is q = 

.477; G is the number of clusters. G is to be estimated on grounds of the empirical target distribution in the 

following way: two targets are assigned to a same cluster if they are less than one hundredth of the display size 

apart (display size = distance between the leftmost and rightmost targets); if T>51 the limit is replaced by 

1/[2(T1)] of the display size.
6
 Hence, the final formula for CF turned out to be: 

                                                 

5 One should perhaps specify: ‘elsewhere’ in space and/or time. Indeed the violation of the statistical independence assumption regards the 

statistical data format and not the precise experimental setup. It does not matter whether one has one target per horizontal position, or 

multiple targets per horizontal position, presented simultaneously (i.e. vertically separated like in a cancellation task) or separately in time 

(like e.g. in Posner’s paradigm). These scenarios are identical from the statistical point of view: if some or all of the targets in a given 

horizontal position have been hit, that position will be less available or not available at all for further hits, yielding a violation of the 

independence assumption. Note also that we do not consider or model perseveration (see e.g. Gandola et al., 2013) in this work. 
6 Without this rule (e.g.) 200 perfectly equispaced targets, which of course should be classified as 200 mono-target clusters, would all be 

classified as belonging to a single cluster! 
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𝐶𝐹 = (
𝑇−1

√𝑇2−1

3

− 1.477) [
2(𝑇−𝐺)

𝐺(𝑇−2)
]

2

+ .477 [
2(𝑇−𝐺)

𝐺(𝑇−2)
] + 1  [Equation 3]  

In the procedure, we took advantage of the fact that the function governing MPH can be fit only in the domain from 

H=1 to H=T/2, i.e. when the number of Hits is less than or equals half the targets. The extension of the function to 

the domain H > T/2 can be done just mathematically; it is sufficient to consider that the MPH distribution of, say, 

20 Hits among 50 targets is identical to the distribution of the Mean Position of 20 Omissions (MPO) among 50 

targets. Provided that both MPH and MPO are standardized in the (.5, .5) space and C-adjusted (see Section 5.3 

‘Adjusting MPH…’ below), there is only a scaling factor between them: MPH = MPO[(TH)/H]. Hence, for 

every H > T/2: 

 

MPH(H) = MPO(T-H) [(TH)/H]    [Equation 4]  

 

meaning that, to obtain the MPH for a given number H of Hits, one has to compute MPO(T-H), the standard deviation 

for the TH Omissions (this can be done by simply applying Equations 1-2 above and replacing every H with TH) 

and multiply the result by the scaling factor [(TH)/H]. 

 

For the liminal cases where the distribution is too far from the Gaussian, that is, when either Hits or Omissions are 

less than 3, the Worksheet proceeds as follows. When exactly 1 Hit or 1 Omission is produced, the MPH (or MPO) 

corresponds to the position of that single item; according to H0 that Hit/Omission had equal probability to occur on 

any target of the display, hence the p-value is easily obtained by computing the percentile of the position of that 

single Hit/Omission within the distribution of target positions. As for the cases where exactly 2 Hits or Omissions 

are produced, we mapped standardized MPH values to percentiles by using the (non-Gaussian) data from the 

Monte-Carlo simulations: our Worksheet includes a table of the simulations’ percentiles from which p-values are 

obtained. The table is currently (June 2018) only available for the case of no clusterization (T=G), so, if there is 

some significant clusterization (G>1.5) the Worksheet does not give any p-value (also look at the decision trees in 

Figs. WM-6 and WM-8). 

 

Since we wished our Worksheet for automatic computation to analyze data sets with up to 256 targets, we checked 

whether the above Equations (which were obtained from simulations with maximum T=150) accurately predict the 

MPH  obtained from new simulations with T=256, and indeed they do. 

 

4.1. Should one run a z or t statistical test? 

The MPH provided by our statistical model (and by our Worksheet) is to be used in an ordinary z-score formula: z = 

(MPH0)/MPH. The expected value is zero because normal subjects are assumed to have zero average MPH (this 

was shown to be true on the Diller task, see Section 5.6 ‘Empirical confirmation…’). For achieving slightly higher 

power, the C-adjusted should be preferred over the LCR-adjusted MPH (see Section 5.3 ‘Adjusting MPH…’). The 

classical Gaussian distribution is to be used, and not a t distribution, because MPH is to be considered as known 

from our model, and does not need to be estimated empirically. 

Mathematically speaking, a perfect performance (H=T) should correspond to an unknown z-score, as both MPH 

and SD are zero (z=0/0); however, to give a correct diagnosis of no neglect, the Worksheet gives a default outcome 

z=0, p=.5 in this case. 

 

4.2. H variation within a subject 

While H is unknown before the experiment, our statistical model treats it as a known parameter (each simulation 

studied the permutations of exactly H Hits in T targets). Thus our Equation gives a SD for MPH that does not take 

into account the effects by H differences that would occur if a same subject repeated the test many times. If one is 

interested in the MPH distribution of a bias-free subject repeating the test many times s/he should consider that our 

SD underestimates this variation. Nevertheless, correct neglect diagnosis needs exactly the H-variation-free SD that 

our model provides. We deliberately used the H-conditional distributions, exactly because they partial out the 

effects by H differences on diagnosis; while of course the main source of variation in H is inter-individual accuracy 

differences, also intra-individual random fluctuations are present; our model partials out both and restitutes an 

unbiased diagnostic outcome. We could confirm that this is the case by running an additional simulation in which 
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3,210 performances by a single subject were generated in each of 12 different combinations of T=10, 20, or 50, and 

p(H)=.1, .5, .7, or .9 (with isoprobability across positions). Therefore, this time each virtual subject was ‘allowed’ 

to vary for H, which followed the binomial distribution with parameter p(H). The resulting distributions of z-scores 

had SD very close to 1, precisely  1.0149 (averaged across the 12 simulations). This value is virtually identical to 

that predicted by the approximation error of our Equation, 1.0138 (Fig. WM-2), which was obtained from 

simulations with fixed H values. Average False Positive Rate was .0563, very close to the nominal 5%. So, the fact 

that simulations were generated with variable instead of fixed H values did not change the goodness of fit of our 

model in any way – in other words our model successfully partials out the effects of H differences, whatever their 

source. 

 

In the following, we discuss the effects of violations of the statistical model’s assumptions, and explain how the 

Worksheet for automatic computation treats them and reduces their negative impact. 

 

5. VIOLATIONS OF MODEL ASSUMPTIONS AND REMEDIES (IF AVAILABLE) 

The above Equation for SD holds when the assumptions of the model are met (see Sections below for a list of 

violations and of their possible effects), and, in general, for data sets with at least 10 targets. P-values can be 

obtained via Gaussian approximation [z=(C-Adjusted MPH)/SD] provided that there are at least 3 Hits and 3 

Omissions [2<H<(T2)]. However, the number of caveats is high and richly structured – see Section 6 ‘Algorithms 

and decision trees’ and Figs. WM-5 and WM-6 for some insight into this complexity. 

 

5.1. Violations of the assumption that the lower asymptote of the curve (floor) is zero 

This apparently natural assumption is actually quite intricate in its meaning. To explain this point we will start from 

plausible cognitive models and explore what their mathematical implications are. 

The 3-parameter logistic curve in which floor=0 (f for short) is logically implied by the idea that there are two main 

types of processing involved in neglect tasks. The first type of processing stages are those which, when damaged, 

produce neglect – a lateral bias in performance. These processing stages clearly encode the stimulus’s spatial 

position, and will henceforth be called ‘Spatial Processing Stages’, SPS. Other processing stages are those that 

influence performance, but do not encode spatial position (e.g. face recognition, letter recognition, word 

recognition, object recognition, etc.). Lesion to them do not produce lateral biases, but only non-lateral deficits, that 

is, impairments that are exactly equal all across space. These stages will collectively be called “extra processing 

stages”, EP. 

We assumed the simplest, most intuitive, model for how the two kinds of deficit combine. The idea is that SPS 

produce some spatial parsing of the stimuli – if we assumed the attentional theory of neglect to be true, we would 

say that SPS ‘move the focus of attention across objects’. When damaged, the probability of successful processing 

by SPS, p(SPS), is assumed to follow a logistic curve with free slope, location and ceiling parameters. The slope 

and location parameters express damage to SPS. As we saw, the ceiling parameter of this p(SPS) curve is assumed 

not to reflect SPS damage – if it did, we would be confusing the effects of damage to SPS with the effects of 

damage to EP [p(EP) is a flat function whose only parameter, which reflects the degree of damage, is ceiling]. Of 

course the ceiling of the p(SPS) curve can well be below 1: back to the attentional theory, the probability that 

attention falls on a given object is unlikely to be exactly 1, even in normal subjects. As for the floor, it would be 

weird to assume that the probability for attention to fall on an object can never be smaller than some above-zero 

limit. So, it looks reasonable to assume that p(SPS) has a zero lower limit – a zero lower asymptote. 

Now, p(SPS) – modelled by a logistic curve with three parameters, and p(EP), the flat function governed by a 

single parameter, are not directly observable. What we observe directly is the curve ruling p(Hit). The question then 

is, how does p(Hit) depend on p(SPS) and p(EP)? The simplest idea is the multiplication law: 

 

p(Hit) = p(SPS)p(EP)    [Equation 5]  

 

For a Hit to occur, a target must be spatially parsed (SPS) and processed by the other critical stages (EP) at the 

same time. Take again the attentional theory as an example, and suppose that the task is to report a letter that can 

appear anywhere in a display: in order to have a Hit, a letter must both be reached by the focus of attention (SPS) 

and be successfully parsed by the reading system (EP). Thus those probabilities must be multiplied. Note that such 

a multiplication law holds if SPS and EP are independent processes – their success probabilities do not depend on 

each other. 
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The multiplication law implies that p(Hit), the product of a logistic 3-parameter curve and a flat function, is again a 

logistic 3-parameter curve. Also p(Hit) has a zero lower asymptote. 

A hidden implication comes to the fore. If p(SPS)=0, p(Hit) must be zero. Rephrasing the statement, if spatial 

parsing does not succeed – if the attentional focus does not reach an object, a Hit is impossible. That is the logical 

consequence of the multiplication law. 

This is a reasonable assumption for many tasks. For instance, in cancellation tasks or any other task where the 

subject is required to reach out to, or to gaze an object, if the object is not included in the attentional focus it will 

never be reached/gazed, so a Hit will indeed be impossible. 

However in some other tasks, especially those with a symbolic response (like a verbal yes/no, or a button press) 

that is prompted by the examiner/apparatus, a Hit might well occur even if a target was not reached by the 

attentional focus. One such example is a task of detection of single visual stimuli, with each trial being signaled by 

a beep sound, and with the subjects being required to say ‘yes, I saw the target’ or ‘no, I did not see anything’. 

Subjects might well guess a ‘yes’ response even though their attention did not reach the target – thus a Hit would 

be achieved without attention. The multiplication law has been violated here. Indeed, a non-multiplicative law 

holds: 

 

p(Hit) = p(SPS)p(EP) + f[1p(SPS)p(EP)]      [Equation 6]  

 

where f is the probability to guess a ‘yes’ response when no target was perceived. 

This model is characterized by a lower asymptote (floor) that is higher than zero, and equals f. Thus, different 

subjects would have different lower asymptotes. A direct demonstration that f is > 0 would be derived by looking at 

catch trials: if, as in many of the above experimental settings, there are trials in which no target-stimulus was 

actually given (only the warning ‘beep’ sound was delivered), a proportion f of these trials would receive a ‘yes’ 

response (so f = False Alarm rate in catch trials). 

The problem can be solved, and we are working towards a solution. However for what concerns MPH in its current 

form (June 2018) this is a serious problem. Indeed the higher f, the more distorted (underestimated) the absolute 

value of MPH. Underestimation of MPH leads to reduction of the statistical power (sensitivity) of the diagnostic 

test for neglect. 

 

Table WM-4 below shows by what factor absolute MPHs are reduced for f varying from .05 to .5. 
 

 
True neglect severity (parameter ν = true MPH) 

f .01 .02 .06 .1 .16 .217 .27 .33 .37 .41 .43 .44 

.05 .95 .95 .94 .94 .93 .914 .89 .86 .81 .7 .5 .25 

.1 .9 .9 .89 .88 .86 .834 .8 .75 .66 .52 .32 .14 

.2 .8 .79 .78 .76 .73 .69 .64 .57 .47 .33 .17 .07 

.3 .7 .69 .67 .65 .61 .565 .51 .43 .34 .22 .11 .04 

.4 .6 .59 .57 .54 .5 .455 .4 .33 .25 .15 .07 .03 

.5 .5 .49 .47 .44 .4 .358 .31 .25 .18 .11 .05 .02 

Table WM-4 Reduction factor of MPH as an effect of guessing behaviour probability f (= floor = lower 
asymptote of the logistic curve = False Alarm rate on catch trials). For example, .86 means that the 
observed (absolute) MPH is 86% of the true value. 

 
Therefore the users of our Worksheet (as of June 2018) are advised not to rely on MPH if both of the following 

conditions hold: 

 

(i) a Hit is well possible even without attention on a target (i.e. when spatial selection/processing was 

ineffective); 

(ii) one suspects that the patient ‘guesses’ some ‘yes’ responses even when s/he does not perceive the 

target – direct evidence in favour of this hypothesis is provided by the presence of False Alarms among 

catch trials. 

 

Note that some cancellation tasks (e.g. the Diller & Weinberg, 1977, Letter Cancellation task) do have the 

equivalent of ‘catch trials’, that is, distractor letters; however the fact that a patient might cancel some 

distractors (technically, some False Alarms) does not invalidate the multiplicative law, because condition (i) 
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above does not apply: a Hit on a cancellation task is reasonably impossible without attention. The model in this 

case would still be multiplicative: 

 

p(Hit) = p(SPS)p(EP) + p(SPS)[1p(EP)]f’     [Equation 7a]  

 

Here f’ is the probability of making a reaching movement ‘guessing’ that a stimulus that was successfully 

processed by attention [p(SPS)] is a target, when letter identification failed (e.g. because of dyslexia or 

amblyopia), an event that occurs with probability [1p(EP)]. As you see, when p(SPS)=0, also p(Hit)=0: the 

multiplicative law still holds, and can be expressed by simply developing Equation 7a: 

 

p(Hit) = p(SPS) {p(EP) + [1p(EP)]f’}    [Equation 7b]  

 

While a full list of the tasks that are likely (or unlikely) to violate the multiplication law would be virtually 

impossible to prepare, some hints are given here. Recall that guessing behavior is the key factor for violating 

the law. 

-We already classified cancellation tasks, and more generally, tasks involving ‘analogical’ responses – e.g. 

reaching out to the target, as very unlikely to violate the multiplication law: guessing is virtually impossible to 

succeed. 

-If the task is visual search but the required response is symbolic – for example, a display containing many 

letters (the targets) is shown and subjects have to report all of them – guessing behavior is in general unlikely 

to occur; anyway such a behavior could easily be detected by including only a subset of the letters of the 

alphabet as targets: a subject who is guessing would produce letters that are not present in that subset. 

Alternatively, one can choose targets that are virtually impossible to generate by guessing, e.g. three-digit 

numbers, or number-letter pairs, etc. 

-It the task requires a symbolic response to single targets that were presented in separate trials, the critical 

factor is whether or not the response is prompted. Tasks in which the response is not prompted – subjects 

cannot exactly predict when a target will be delivered – are likely to obey the multiplication law. E.g. in static 

perimetry the subject is administered with a sequence of stimuli with variable inter-stimulus interval, and 

without warning signals (also see e.g. De Renzi et al., 1989). This substantially reduces the probability of 

guessing behavior, because it is quite unlikely to give a response (a button press) within the time window of a 

stimulus without perceiving it. By contrast, we already saw that if a prompt signal is given on each trial (e.g. a 

‘beep’ sound or an explicit question like ‘have you seen a target?’) the subject is forced to give a response; in 

this condition, guessing behavior is relatively likely to occur and to produce Hits (violation of the 

multiplication law).
7
 However again, if the categories of the prompted response are many and not just two – for 

instance, if the target of each trial is an isolated letter and the subject has to report it rather than just say ‘yes’ or 

‘no’, guessing behavior would be very unlikely to occur, because guessing the correct letter out of 26 or so is a 

hopeless strategy. 

Note that the simple presence of guessing behavior is not sufficient to deduce a violation of the multiplication 

law: guessing must also be effective, that is, likely to have produced Hits. For instance, if targets are three-digit 

numbers presented on screen and a patient utters non-existent targets, this guessing behavior is very unlikely to 

succeed, so no sizeable violation of the law is implied. 

Table WM-5 tries to classify tasks and suggests whether violations of the multiplication law are to be expected. 

 

 

 

 

 

 

 

 

                                                 

7 If targets are isolated red/blue stimuli and the task is to name the colour after the ‘beep’, a violation of the law is clearly present, with the 

difference that we do not have Hits and Misses here, but Correct/Incorrect. The lower asymptote f is necessarily .5 (chance level), leading to 

a constant underestimation of MPH. Similar considerations hold for ‘2afc’, two-alternative-forced-choice experiments (e.g. Azzopardi & 

Cowey, 1997). 
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Response type N of targets 
per trial 

Response is 
prompted? 

Response 
categories 

Examples Violation of the law 

 'Analogical' 
(arm/hand reaching 
movement, or eye 
movement) 

One/Many No/Yes  Cancellation; picking up objects 
from a table; copying several 
separate and different drawings; 
gazing at target objects in a visual 
scene 

No 

Symbolic Many No Many Visual search of numbers; free 
recall of objects previously 
presented in different positions 

Unlikely; however use 
targets that are difficult to 
guess 

 One No Few  Detection of isolated stimuli 
presented with variable ISI (e.g. 
static perimetry) 

Unlikely 

   Many Reporting of isolated letters 
presented with variable ISI 

Unlikely 

  Yes Few  Prompted Y/N detection of 
isolated stimuli; prompted 
classification of stimuli as red/blue 
(2afc); recognition (Y/N) of objects 
previously presented in different 
positions 

Likely in YN designs – use 
catch trials to check for 
effective violation; 
violation is necessarily 
present in 2afc designs 
(f=.5) 

   Many Prompted reporting of isolated 
letters 

Unlikely – use catch trials 
anyway 

Table WM-5 Classification of task characteristics in terms of probability of violation of the multiplication law. YN = Yes/No designs in 
psychophysics; 2afc = two-alternative-forced-choice designs in psychophysics. 

 

5.2. Violations of target homogeneity assumptions 

Violations of the target homogeneity assumptions (equispacing and ties homogeneity) can be classified according 

to the spatial frequency of the fluctuations in target density. Take equispacing as an example. Positions might not 

be equispaced, but the inter-position interval might vary randomly along the dimension; in this way the density of 

targets varies with high spatial frequency (‘random-distribution’ violation). Else, suppose that inter-position 

intervals systematically increase, or decrease, along the dimension: for example, positions might be denser on the 

left than on the right half of the display (an example of what we shall call ‘eccentric-mean’ violation), or be denser 

at display centre than at display ends, or show a pattern of alternate high- and low-density regions: here we have 

low-spatial-frequency violations of equispacing. By far the worst kind of a violation, potentially inducing massive 

biases in MPH, is the ‘eccentric-mean’ violation, occurring when  targets’ mean position is not halfway across the 

display; by contrast, distortions in MPH induced by random-distribution violation are typically minuscule and can 

safely be ignored.
8
 

Eccentric-mean violations were studied in detail – see the following Sections (5.3 ‘Adjusting MPH for eccentric…’ 

and 6 ‘Algorithms and decision trees’). 

It is important to note that if target distribution is seriously eccentric, problems will not be just statistical. Subjects’ 

attention will most likely be biased towards the denser side, thus, ν will be non-zero as a baseline; these would 

make a diagnosis of neglect and a quantification of it (how far ν is from baseline) much more complex an enterprise 

than that formalized in this work. 

 

5.3. Adjusting MPH for eccentric target distributions 

By ‘eccentric’
9
 we mean target distributions whose mean position (Mean Position of Targets, MPT) is not exactly 

halfway between the leftmost and rightmost targets. In these cases an adjustment is necessary, otherwise one would 

misdiagnose a subject who detects all of the targets as showing neglect. In order to decide how to adjust the MPH, 

we had a look at the effects of massive non-linearity in the spacing of target positions on MPH. We used a 

                                                 

8 Identical considerations hold for the other assumption, ties homogeneity. 
9 We did not use the more intuitive term ‘asymmetric’ because there are asymmetric distributions whose mean is the display centre (e.g. 

target positions: 0, 1, 1, 2, 4, 4). 
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logarithmic distribution of 101 positions across a virtual display. By using logistic functions, we implemented a 

whole range of neglect severities, from extreme left neglect to no neglect to extreme right neglect, also varying the 

slope of the logistic function. 

 

Fig. WM-3 shows the results of this simulation. The distorted MPH obtained from the logarithmically-eccentric 

target distribution is shown on the X axis, while the correct MPH – the one that would have been obtained with 

perfectly equispaced targets – is shown on the Y axis. Data from a very shallow (low slope) and a very steep (high 

slope) logistic function are shown separately. Clearly, when there is no neglect, the MPH corresponds to the MPT – 

in this case MPT=+.29. When neglect is not zero, the dots show the behaviour of the distortion, which is somehow 

non-linear, and with different slopes on the two sides; anyway, at both ends, the distortion disappears, as an 

extreme right neglect (only the leftmost target is detected) yields .5 and an extreme left neglect (only the 

rightmost target is detected) yields .5 anyway. 

If one is wishing to eliminate the distortion, an adjustment is to be introduced that makes X values correspond to Y 

values in the plot, by means of a function interpolating the cloud of points. The problem is that the curvature of that 

function depends on the exact type of eccentricity in the target distribution; we explored the logarithmic distortion, 

but of course, there are virtually infinite ways for a distribution to be eccentric. So we were forced to simplify the 

procedure by using two separate straight lines (shown in solid in Fig. WM-3), those connecting the point (MPT, 0) 

to (.5, .5) and to (.5, .5). 

 

This adjustment corrects most of 

the discrepancy, albeit it is 

certainly suboptimal. We will call 

this adjustment ‘LCR’ (Left-

Centre-Right), because it 

standardizes the MPT, which will 

always be zero, and both ends, 

with the leftmost target always 

being given the value .5, and the 

rightmost target always being 

given the value .5. 

There is a simpler way to adjust 

MPH, that is, to subtract the MPT 

position from the MPH position, 

and ignoring the ends. This will 

be called ‘centering’ (C-

adjustment) and is shown as a 

dashed line in Fig. WM-3. C-

adjustment was used, for 

instance, by Rorden & Karnath 

(2010) when computing their 

CoC index. What C-adjustment 

guarantees is that normal subjects 

(who detect all or almost all of 

the targets, hence having a MPH 

that is very close to MPT) will 

obtain a zero score; however, it 

does not consider the distortion 

induced when quantifying 

different degrees of neglect: the 

dashed line is indeed very far 

from the cloud of points representing the real performance (parameter ν) of neglect patients. 

A simple simulation study confirmed that LCR-adjustment is better than C-adjustment, albeit still imperfect, when 

one is wishing to estimate the real level of neglect (ν) of a patient and target distribution is eccentric. The opposite 

holds true when one is wishing to diagnose neglect in the same situation: here the LCR-adjustment performs worse 

than the C-adjustment. Indeed, the distribution of LCR-adjusted MPH under null hypothesis of no neglect, is biased 

(its mean is different from zero), is often skewed, and has inflated standard deviation with respect to the 
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equispaced-targets case; the C-adjusted MPH has better distributions: these are unbiased (their mean is virtually 

always zero), are less often skewed, and are less often inflated in variance with respect to LCR-adjusted MPH. 

 

To summarize, both C-adjusted and LCR-adjusted MPH scores are suboptimal corrections for target distribution 

eccentricity (Fig. WM-3). If one uses the C-adjusted MPH the bias will be eliminated when ν=0 (no neglect), but 

will be larger, the more severe neglect (the farther ν is from 0). If one uses LCR-adjusted MPH there will be some 

bias also when ν=0, but biases elsewhere will be smaller than with C-adjusted MPH. As a consequence, C-MPH is 

better for diagnosing neglect, and LCR-MPH is better for quantifying neglect. So in our Worksheet we used C-

MPH in neglect diagnosis (p-value computation) and LCR-MPH for giving neglect severity estimates. This 

accounts for why sometimes the z-score does not exactly equal MPH divided by standard deviation: the MPH given 

as an output is the LCR-adjusted one, while in z-score computation the C-adjusted one is used. 

 

While C- and LCR-adjusted MPH are ‘specific’ for diagnosis and quantification respectively, one must not forget 

that they are suboptimal: in cases of severe eccentricity of the target distribution, the MPH distributions will be 

irregular despite the use of adjustments. Hence the Worksheet has tools for diagnosing severe eccentricity in target 

distribution, which warn the user about the reliability of MPH. More in detail, when a severe eccentricity is caused 

by the spacing between targets being strongly asymmetric (see Section 6 ‘Algorithms…’ below for details), the 

user is advised to give up inference on MPH, and to look at MOH instead. This index (Mean Ordinal position of 

Hits) only takes into account the ordinal positions of targets, and not their metric positions in physical space. Thus 

for instance, if physical target positions are 0, 1, 2, 10, 20, these are ranked 1, 2, 3, 4, 5, and the MOH of a subject 

omitting the two leftmost targets will be rank 4. Clearly, inferences with MOH are limited to the abstract space of 

target order.
10

 While this second-choice MOH index is completely immune to violations of the equispacing 

assumption (because it ignores the metrics), it is not immune to serious eccentricity (and in general, to serious 

violations of homogeneity) of ties distribution. In other words, irrespective of whether positions are equispaced, 

when (e.g.) positions on the right have many more targets (repeats, or ‘ties’) than positions on the left, also MOH 

becomes unreliable. 

 

It is important to note that the example in Fig. WM-3 was deliberately chosen for its being extreme, in order to 

illustrate the geometry of the problem. In the real world of neglect assessment, violations of that size are 

impossible, and in general sizeable violations of target distribution homogeneity are rare. In neglect experiments 

where targets are presented one at a time, their positions are typically perfectly equispaced and their number is 

perfectly balanced across positions. In visual search or cancellation tasks, the need for the display to have a 

disordered appearance (which in turn guarantees that target positions are to some degree unpredictable), forbids a 

perfectly equispaced organization of targets; however, target fields are almost always reasonably homogeneous and 

fall well within the limits that we set in our Worksheet for ‘diagnosing’ violations of the homogeneity assumption 

(and described in the ‘Algorithms…’ Section 6 below). Therefore the effects and discrepancies we described in the 

above macroscopic example are minuscule and negligible in practice. 

 

5.4. Violations of the ‘univocal interpretation’ assumption 

This assumption is very unspecific and shared by any possible measure of neglect. One example of violation is the 

behaviour of a patient without neglect who explores the display left to right during the test, and gets tired as time 

passes, thus missing progressively more targets. Here a right neglect would be misdiagnosed because of the 

confusion between time (the variable that really had an effect on detection probability) and space. Of course our 

model cannot avoid any such confusion, because it originates from an experimental rather than statistical limit of 

the procedure. 

 

5.5. Violations of the isoprobability or no-lateral bias assumption 

There are two possible violations of this assumption. 

(1) Target detection probability varies along the studied spatial dimension: for instance (if the examiner is 

interested in the horizontal dimension) when targets on the left side are less likely to be detected than targets on the 

right side in a normal subject. In mathematical terms, this means that the logistic curve is not perfectly flat.  

                                                 

10 If the user wishes to, s/he can directly insert ranks (ordinal values) instead of metric values (cm, mm, or any units of physical distance) as 

an input to the Worksheet; in this case, only MOH and no MPH solution will be given. 
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(2) Target detection probability within a given normal subject varies along any dimension that is orthogonal to 

(independent of) the studied spatial dimension – for instance, colour, shape, duration, time of exploration, … even 

another spatial dimension. 

Type (1) violations tend to produce slight underestimation of the true MPH variability values, thus slightly 

increasing false positive rates (alpha probabilities in diagnostic decisions). 

Type (2) violations produce the opposite effect, that is, a slight overestimation of true MPH variability with 

decrease in false positive rates. An example will clarify the latter case. Suppose that there are 50 red targets and 50 

green targets, interspersed with 100 blue distractors, and that the subject is colour blind, so that he cannot tell green 

from blue stimuli. He will easily spot the red targets, but will miss all the green ones. According to our model, Hit 

rate=.5 predicts that MPH should vary, from sample to sample in the same subject, with standard deviation=.03; but 

we know that MPH will not vary at all: it will always be exactly 0 (no variation), because the red targets will 

always be detected, and the green ones will never be found. Hence, because of the violation of the assumption (red 

targets have higher detection probability than green ones), the MPH variability has been overestimated, and the test 

is over-conservative, with a decrease in the false positive rate. Less extreme colour blindness (e.g. green targets are 

detected with 50% probability) will produce intermediate results, but always with some degree of over-

conservativity. Another example can be fabricated by replacing ‘red’ with ‘top’  and ‘green’ with ‘bottom’, so that 

‘colour-blind’ is replaced by ‘vertical neglect’. Cases of vertical neglect without horizontal neglect would produce 

exactly the same over-conservativity of our model. 

Some parts of the following Section were also included in the paper (Toraldo et al., 2017). 

 

5.6. Empirical confirmation of the isoprobability assumption: normal subjects only vary for Hit 

rate, and have no lateral biases 

The isoprobability or ‘no lateral bias’ assumption, which was introduced just to simplify the model’s mathematics, 

has the following meaning: neurologically intact subjects and patients without neglect are supposed to vary only in 

the efficiency of those stages of processing that do not encode the spatial position of the stimulus (e.g. shape 

processing, if the targets need to be recognized by shape). This means that the sparse Omissions produced by 

neurologically intact subjects exclusively depend on occasional failure of space-invariant processing, with exactly 

equal probability in each and every position of the display. Of course, different subjects can have different levels of 

such spatially constant probability. In this view, all of the variation in MPH across normal subjects would actually 

be due to space-invariant factors. 

We tested this assumption by looking at empirical data. The prediction is that the distribution of z-scores computed 

under the null hypothesis that no lateral bias is present, should distribute with mean=0 and standard deviation=1 in 

a sample of normal subjects (taking the z-score from each subject is a way of partialling out between-subjects 

differences in Hit rate).
11

 We collected a sample of 199 controls (Female: 57%; age: 60.9±12.2, education: 

11±4.6)
12

 performing the Diller & Weinberg’s (1977) letter cancellation task or variants of it – targets ranged 104 

(as in the original) to 108, could be either Hs (as in the original) or Vs, and could be administered on A4 or A3 

sheets. These data were found in the electronic archives of many different experimental or clinical studies in the lab 

of one of us (AT) across many years (1994-2013). Of the 199 subjects, 134 were excluded because they produced a 

perfect performance, detecting all targets, which leads to an unknown z-score (0/0); the distribution of the 

remaining 65 subjects’ z-scores almost perfectly matched the standard Gaussian: the mean was .024 (not 

significantly different from zero: one-sample t-test, t(64)=.181, p=.857, Bayes Factor BF=1083 against the 

hypothesis that normal subjects lie .5 standard deviations of ‘pure noise’ away from z=0) and the standard deviation 

was 1.077 (χ
2
(64)=74.24, one-tailed p=.179; Bayes Factor against hypothesis H1 that variance was 2: BF=18.675).

13
 

Therefore, the assumption that no lateral biases affect a sample of 65 subjects (i.e., that all of the variation in their 

MPH is the effect of the expected noise due to non-perfect Hit rate) was confirmed. This is a direct confirmation of 

                                                 

11 We did not test brain-damaged patients without neglect because the (very likely) inclusion of cases of subclinical neglect, no matter how 

small, would have polluted the evidence and made interpretation ambiguous; furthermore, what neglect test should have been used as an 

exclusion criterion? An inescapable circularity would have affected such an experiment. 
12 Demographics could be traced back for 76% of the overall sample. 
13 There was a clear outlier, with z=3.318; this subject missed 11 out of 108 targets, 10 on the left half and 1 on the right half of the display; 

the absolute deviation of his MPH was minor (+.03 or 3% of the display width); however, even excluding him on suspicion of some 

undetected minor brain damage (a legitimate move: H1 specifies that the shape is Gaussian, albeit with σ>1, and not that there are outliers!), 

the group mean was .076 (t(63)=.611, p=.543, BF = 9210) and the standard deviation was .999 (χ 2(63)=62.9, one-tailed p=.48, BF = 

225.12). 
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the validity of our statistical model, and of the neglect diagnoses yielded by it. 

 

5.7. Gaussianity violations 

When the number of positions is very small, there is an impact on the shape of the statistical distribution of MPH. 

Thus if 50 targets are presented in 50 different positions, the MPH distribution will be very close to Gaussian, 

while if the 50 targets are presented in only 2 positions, MPH may have a very discrete shape, also depending on 

the overall number of Hits/Omissions. Of course such situations are very rare in practice; however, when the shape 

is too irregular to consider the Gaussian approximation as reliable, a warning message is given by the Worksheet 

and the p-value is omitted from the Output. 

As explained in previous Sections, with fewer than 3 Hits or 3 Omissions, MPH distributions importantly depart 

from gaussianity. However, when there is exactly 1 Hit, the distribution of MPH, that corresponds to the position of 

that single Hit, is nothing else than the distribution of target positions; hence the p-value is simply computed as the 

cumulative of all target positions that are more extreme than the recorded one. In this situation the p-value is valid 

irrespective of any form of model violation (e.g. violations of the equispacing assumption and/or of the ties-

homogeneity assumption). Identical considerations hold for the case with exactly 1 Omission. When there are 2 

Hits, or 2 Omissions, we obtained stable estimates of many percentiles of the (non-Gaussian) MPH distribution (see 

Table WM-4) – hence the Worksheet provides interpolated p-values; however these hold only when there are no 

ties – i.e. when each positions has only one target in it – warning messages are given otherwise. 

 

 Two Hits  Two Omissions 

1-tailed p T=10 T=20 T=50 T=100 T=150 T=256  T=10 T=20 T=50 T=100 T=150 T=256 

.500 .000 .000 .000 .000 .000 .004  .000 .000 .000 .000 .000 .000 

.490 .000 .000 .005 .005 .005 .006  .000 .000 .000 .000 .000 .000 

.480 .000 .000 .010 .010 .010 .011  .000 .000 .000 .000 .000 .000 

.470 .000 .026 .015 .015 .015 .016  .000 .001 .001 .000 .000 .000 

.460 .000 .026 .020 .020 .022 .021  .000 .003 .001 .000 .000 .000 

.450 .000 .026 .026 .028 .029 .026  .000 .003 .001 .001 .000 .000 

.440 .056 .026 .031 .030 .034 .031  .014 .003 .001 .001 .000 .000 

.430 .056 .032 .036 .038 .039 .036  .014 .004 .002 .001 .000 .000 

.420 .056 .053 .041 .043 .044 .042  .014 .006 .002 .001 .001 .000 

.410 .056 .053 .046 .048 .050 .047  .014 .006 .002 .001 .001 .000 

.400 .056 .053 .051 .053 .055 .053  .014 .006 .002 .001 .001 .000 

.390 .056 .053 .056 .061 .060 .059  .014 .006 .003 .001 .001 .000 

.380 .056 .066 .066 .066 .067 .065  .014 .007 .003 .001 .001 .001 

.370 .056 .079 .071 .071 .072 .072  .014 .009 .003 .001 .001 .001 

.360 .056 .079 .077 .076 .079 .077  .014 .009 .003 .002 .001 .001 

.350 .111 .079 .082 .081 .084 .084  .028 .009 .003 .002 .001 .001 

.340 .111 .092 .087 .091 .091 .089  .028 .009 .004 .002 .001 .001 

.330 .111 .105 .097 .096 .095 .096  .028 .012 .004 .002 .001 .001 

.320 .111 .105 .102 .101 .101 .102  .028 .012 .004 .002 .001 .001 

.310 .111 .105 .107 .106 .107 .109  .028 .012 .005 .002 .001 .001 

.300 .111 .109 .117 .114 .114 .115  .028 .012 .005 .002 .002 .001 

.290 .111 .122 .122 .121 .121 .122  .028 .015 .005 .002 .002 .001 

.280 .111 .132 .128 .126 .129 .128  .028 .015 .006 .003 .002 .001 

.270 .139 .132 .138 .134 .136 .135  .028 .015 .006 .003 .002 .001 

.260 .167 .145 .143 .141 .143 .143  .042 .015 .006 .003 .002 .001 

.250 .167 .158 .148 .146 .149 .150  .042 .018 .006 .003 .002 .001 

.240 .167 .158 .158 .154 .158 .158  .042 .018 .006 .003 .002 .001 

.230 .167 .158 .168 .162 .164 .164  .042 .018 .007 .003 .002 .001 

.220 .167 .171 .168 .167 .169 .172  .042 .020 .007 .003 .002 .001 



19 

 

.210 .167 .184 .179 .177 .176 .179  .042 .020 .008 .004 .002 .001 

.200 .222 .184 .189 .184 .186 .187  .042 .020 .008 .004 .002 .001 

.190 .222 .197 .199 .192 .195 .195  .056 .022 .008 .004 .003 .002 

.180 .222 .211 .199 .202 .201 .204  .056 .023 .009 .004 .003 .002 

.170 .222 .211 .209 .210 .211 .212  .056 .023 .009 .004 .003 .002 

.160 .222 .224 .219 .220 .218 .222  .056 .025 .009 .004 .003 .002 

.150 .222 .237 .230 .227 .227 .229  .056 .026 .010 .005 .003 .002 

.140 .222 .237 .240 .237 .235 .238  .056 .026 .010 .005 .003 .002 

.130 .278 .263 .250 .247 .247 .248  .069 .028 .010 .005 .003 .002 

.120 .278 .263 .260 .255 .255 .258  .069 .029 .011 .005 .003 .002 

.110 .278 .265 .270 .263 .267 .268  .069 .029 .011 .005 .004 .002 

.100 .278 .289 .281 .275 .279 .280  .069 .032 .012 .006 .004 .002 

.090 .333 .303 .296 .285 .289 .291  .069 .032 .012 .006 .004 .002 

.080 .333 .316 .311 .301 .300 .304  .083 .035 .013 .006 .004 .002 

.070 .333 .316 .321 .313 .312 .320  .083 .035 .013 .006 .004 .002 

.060 .333 .342 .332 .328 .326 .332  .083 .038 .014 .007 .004 .003 

.050 .333 .355 .352 .343 .342 .346  .083 .038 .014 .007 .005 .003 

.040 .389 .368 .362 .356 .361 .364  .097 .041 .015 .007 .005 .003 

.030 .389 .395 .383 .374 .379 .381  .097 .044 .016 .008 .005 .003 

.025 .389 .395 .398 .386 .393 .390  .097 .044 .016 .008 .005 .003 

.020 .444 .421 .408 .399 .401 .403  .111 .045 .017 .008 .005 .003 

.010 .444 .434 .434 .432 .431 .427  .111 .050 .018 .009 .006 .003 

.009 .444 .447 .444 .432 .435 .429  .111 .050 .018 .009 .006 .003 

.008 .444 .447 .444 .437 .438 .433  .111 .050 .018 .009 .006 .003 

.007 .444 .447 .444 .442 .441 .439  .111 .050 .018 .009 .006 .003 

.006 .444 .447 .449 .447 .445 .442  .111 .050 .019 .009 .006 .004 

.005 .444 .461 .454 .452 .448 .449  .111 .051 .019 .009 .006 .004 

.004 .444 .474 .459 .460 .451 .455  .111 .051 .019 .009 .006 .004 

.003 .444 .474 .464 .465 .461 .463  .111 .053 .020 .009 .006 .004 

.002 .444 .474 .469 .470 .468 .471  .111 .053 .020 .010 .006 .004 

.001 .444 .474 .485 .482 .480 .479  .111 .053 .020 .010 .006 .004 

Table WM-6 Absolute values of MPH (use C-adjusted ones from the experiment) corresponding to one-tailed p-values 
(leftmost column), to be applied when exactly 2 Hits or 2 Omissions are recorded. Linear interpolations are computed by 
the Worksheet for intermediate number of targets (T).   

  

6. ALGORITHMS AND DECISION TREES 

In this Section we report the algorithms and decision trees implemented in our Worksheet. By ‘algorithms’ (Fig. 

WM-4) we refer to the sequences of operations applied on the targets’ coordinates to obtain MPH (or MOH) and 

SD estimates. By ‘decision trees’ we refer to one specific sector of such algorithms, that is, to the complex criteria 

for giving, or avoiding to give, SD and p-value estimates on grounds of possible irregularities in the target 

distributions (violations of the target homogeneity assumptions, Section 5.2). 

 

6.1. The algorithms: ‘metric’ vs ‘ordinal’ target coordinates and ‘metric’ vs ‘ordinal’ solutions 

Fig. WM-4 shows the main streams of information processing implemented in our Worksheet. The input is the set 

of coordinates in one dimension (we will call it ‘vector X’, albeit that might well be in the vertical dimension of 

course). The aims of the algorithms is to produce estimates of MPH (or MOH) and SD, from which z-scores and p-

values are then generally computed. 
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As the reader can see, the main distinction is between two cases: when coordinates are ‘metric’ and when they are 

‘ordinal’. By ‘metric’ coordinates we refer to numbers that express real positions in physical space, and are thus 

given in some metric units like mm, cm, degrees, pixels, etc. By ‘ordinal’ coordinates we refer to numbers that do 

not express measurement units, but just express a spatial order. For instance, suppose that in an experiment many 

stimuli were presented in each of three main sectors of space, Left, Centre, and Right, but the information as to the 

precise position within each sector was lost – only Left, or Centre, or Right are known for each trial. These 

horizontal coordinates are to be considered as e.g. –1, 0, +1, at an ordinal scale level. 

When coordinates are metric, both a metric solution (MPH) and an ordinal solution (MOH) are offered; when 

coordinates are just ordinal, only the ordinal solution is meaningful, so it is the only one that is offered. Beware not 

to confuse the meaning of coordinates (which can be either metric or ordinal) with the type of solution (which can 

also be either metric or ordinal). 

Clearly, if coordinates are metric, for instance expressed in mm, the MPH, that is, the metric solution, is fully 

viable – the metric meaning of the coordinates allow for averaging out the positions of the Hits and get a 

meaningful summary statistic, the MPH. Equally obvious is the case where coordinates are ordinal: in this case 

averaging out the coordinates (MPH) potentially leads to meaningless numbers – so the metric solution is 

prevented. What we do in this case is to take the ordinal coordinates and transform them into ranks, which can be 

averaged out (MOH) – we follow the ordinal solution. This new quantity can be interpreted just in the ordinal 

scale, i.e., in the abstract space of target order, without reference to real physical metrics. 

So far, so good. The last, intriguing case is when coordinates are metric, and one wishes to look at the ordinal 

solution. This might seem odd – why should one wish to lose usable information, i.e. the exact spacing between 

positions? However, there is one particular condition in which this is fully justified, and even necessary. If targets 

are distributed in an irregular way (see 5.2 ‘Violations of target homogeneity assumptions’) – so irregular that the 

statistical models, which were simulated by assuming equispaced positions and equal number of targets per 

position, cannot be applied, the ordinal solution is the only one that can be interpreted. We shall discuss the 

diagnostics of target distribution irregularities, which will sometimes explicitly deny the validity of the metric 

solution, and, in some extreme cases, even deny the validity of the ordinal solution.  

 
It must be clarified here that in practice, ordinal coordinates are likely to be rare; even rarer is the possibility that 

target are distributed so irregularly as to make our statistical model invalid. Hence, the metric coordinates – metric 

solution combination will cover the vast majority of practical cases, However, for the sake of completeness, we are 

discussing all other cases here. 

 

METRIC COORDINATES

ExA: (0,2,499,501,998,1000), real MPH=-0.499 ExA: (1,1,500,500,999,999) ExA: (1,1,2,2,3,3)

ExB: (0,2,49,51,998,1000), real MOH=-0.495 ExB: (1,1,50,50,999,999) ExB: (1,1,2,2,3,3)
Original coordinates X Clusterization Clusterized coordinates X' Ranking Clusterized ranks X"

cluster count G cluster count G

invalidate r'overall, r'spacing, r'TIES invalidate

MPH SD or validate MPT, MPP, TIES or validate MOH SD

Metric solution Ordinal solution

estimated MPH=-0.499 estimated MOH=-0.5

ORDINAL COORDINATES

ExC: (-3,-2,-1,1,2,3), real MOH=-0.4 ExC: (1,2,3,4,5,6)

Original coordinates X Ranking Ranks X"

cluster count G

r' TIES, invalidate

TIES or validate MOH SD

Fig. WM-4 Ordinal solution

estimated MOH=-0.4
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In the Worksheet (from version 2.0 onward) the default is that coordinates have metric meaning, unless the user 

overtly specifies that this is not the case – by plugging an ‘o’, for ‘ordinal’ in a dedicated cell. 

Therefore, if the user specifies that coordinates are metric (or does not specify anything), both a metric solution 

(MPH plus statistical model) and an ordinal solution (MOH plus statistical model) are offered (top panel in Fig. 

WM-4); else, if the user explicitly specifies that the coordinates are just ordinal, only the ordinal solution (MOH) 

will be made available by the Worksheet (bottom panel in Fig. WM-4). 

 

In more detail, the information processing is as follows. Fig. WM-4, top panel, shows the case were coordinates are 

metric. The original metric coordinates, X, give rise to a direct estimate of MPH; coordinates are then clusterized – 

i.e. targets whose coordinates are very close to each other (in general, less than 1/100 of the display width apart, see 

Section 4) are assigned to a same ‘cluster’, and are all given the average coordinate of that cluster. E.g., if targets 

whose coordinates are 1, 2 and 3 mm compose a cluster, new ‘clusterized’ coordinates are 2 mm for all three 

targets. The count G of clusters (see Section 4, text relative to Equation 3, for details on the computation) is used to 

derive the SD of MPH. Clusterized coordinates X’ are then used to assess the possible presence of important 

violations of the target homogeneity assumptions. These assessment is made on ground of six parameters, called 

r’overall, r’spacing, r’TIES, MPT, MPP, and TIES, which are all extensively explained in the Sections 6.2.1 and 6.2.2. 

The result of this assessment can be (i) invalidation of the metric solution, with validity preserved for the ordinal 

solution, or (ii) invalidation of both solutions, as will be explained in Section 6.2.3. As a last step, clusterized 

coordinates X’ are transformed into ranks, i.e. the metric value is lost and a pure order, 1, 2, 3… is generated. On 

grounds of these clusterized ranks X”, both MOH and its SD, composing the ordinal solution, are determined. 

The bottom panel of Fig. WM-4 shows the information stream that is applied when original coordinates X are 

stated to be ordinal in nature by the user. In this case coordinates are immediately transformed into ranks, which 

give rise to MOH and SD – an ordinal solution, as before. The ranks are also used to derive two parameters, r’TIES 

and TIES, which are useful to assess the reliability of the ordinal solution (the only one available in this ordinal-

coordinates case). 

 

6.1.1. Comparison between ordinal solutions when coordinates are metric vs ordinal 

 

An ordinal solution is given both when coordinates are metric and when coordinates are ordinal (Fig WM-4). 

However, the mathematics is slightly different in the two scenarios. The differences lie in the fact that the metric 

nature of coordinates allows for some operations that the ordinal nature cannot justify. Indeed, since ordinal 

coordinates do not express true distances, one of the criteria for assessing target distribution homogeneity, i.e. 

equispacing (parameters r’spacing, MPP) will not be meaningfully evaluated. Moreover, in the absence of distances, 

out of the six parameters that evaluate target distribution homogeneity, only TIES and r’ties carry meaningful 

information. Target distribution homogeneity will hence be judged only with reference to these two scores. Also, 

the procedure used to count the clusters is different: in the case of metric coordinates, targets that were very close 

to each other (e.g. 1 mm apart on an A4 display) can be stated to belong to a same cluster; clearly, no such 

reasoning can be applied to ordinal coordinates: in this case any difference, no matter how small, will be evidence 

that two targets belong to different clusters. Thus, the number G of clusters will equal the number of different 

coordinates in the set. As a consequence, G, and hence T/G (the average number of targets per cluster, an important 

parameter, see later), will in general be different between metric and ordinal coordinates; also TIES, r’ties, 

SD(MOH), z-score, and p-values, which all depend on G, will be slightly different. 

 

6.1.2. Clustering and computation of MPH/MOH and SD in various cases 

In this Section we will show some examples of computation carried out on coordinates, in order to illustrate the 

wheels and gears of the Fig. WM-4 schema, and to explain why it was built so.  

 

Example A in Fig. WM-4. Consider the case of metric coordinates X=(0,2,499,501,998,1000) in which only the 

first two targets, X=1, X=2 have been detected (bold). An unbiased estimate of MPH, taken from the original 

coordinates, is (mean(0,2)0)/(10000).5=(1/1000.5)= .499. To compute SD, which can vary by a factor of up 

to 1.7 because of clusterization (Section 4, text referring to CF), coordinates need to clustered first, and become 

X’=(1,1,500,500,999,999).
14

 

                                                 

14 The small distortion in SD due to the discrepancy between original X and clusterized X’ is many times smaller than the distortion we 

would have had by assuming that the positions in X were equispaced [X=(0,200,400,600,800,1000)]! 
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Example B. Now consider another example: metric coordinates are X=(0,2,49,51,998,1000). This time the 

distribution is massively asymmetric, with severe failure of equispacing, and with a clear cluster-structure. We 

cannot use our statistical model (with Equations listed in Section 4) on this X, because that was simulated on 

equispaced positions (this invalidation occurs via the r’ etc. parameters). So we need to transform X in order to 

make positions as close to equispacing as we can, and, at the same time, preserve the cluster-structure, otherwise 

SD will be severely distorted in its estimation. Trying to apply some form of curvilinear transformation is not a 

solution, because it would completely lack generality (it would need to be tailored on each specific case). The best, 

most practical, and most general way to proceed is to cluster coordinates first, and to rank them afterwards (the 

opposite operation would not work, see later). Thus we get X’=(1,1,50,50,999,999) and from this, X”=(1,1,2,2,3,3): 

a perfectly equispaced distribution, and which kept much of the cluster-structure. It is from this, and only from this 

X” distribution that we can derive parameters MPH and SD, because X” perfectly matches the feature 

(equispacing) of the distributions we used in our simulations to build the statistical model. So we have to derive 

both MPH and SD from X”=(1,1,2,2,3,3). MPH of course is to be named MOH given that the new coordinates are 

ranks. 

Example C in Fig. WM-4 shows a trivial case in which coordinates are ordinal. 

 

A number of features can be grasped by inspecting the structure of the algorithm in Fig. WM-4. 

 

First, the metric solution’s MPH is computed from original coordinates, while SD is computed taking into account 

the number of clusters (i.e., conceptually, taking the clusterized coordinates). Indeed these two choices minimize 

estimation errors: clusterized coordinates would slightly bias MPH towards the extremes, and original coordinates 

(failing to take clusterization into account) would strongly bias the estimation of SD by a factor between 1 and 

about 1.7. As for the small bias in MPH estimation, this can be understood by comparing the estimation from the 

original coordinates X and the one obtained from the clustered X’ coordinates. By using X’, we would have 

obtained (mean(1,1))/(9991).5= .5, which is slightly off correct: it indicates the left endpoint of the display, 

while we know that the detected targets were the leftmost, plus the leftmost-but-one (real MPH= ν = .499). By 

using X, we obtain the correct .499 value. As for the bias in SD estimation if factor G, number of clusters, is not 

taken into account, see Section 4 (text referring to CF). 

 

Second, the ordinal solution when coordinates are metric gives imperfect estimates, but no better estimates are 

currently available. Look at Example B in Fig. WM-4: at the end of the process we obtain MOH= .5, i.e. the left 

extreme, while we know that the ‘real’ value is actually slightly off the left extreme, somewhere around .495
15

: 

X=(0,2,49,51,998,1000); it is anyway generally a very small bias and is well counter-acted by the possibility to 

apply the statistical model for diagnosis. Note also that, had we skipped the clustering operation, we would have 

got a much worse mistake: X”=(1,2,3,4,5,6) would have led to MOH= .4, much farther from the real (about) .495 

value than our current estimate, .5. 

 

Third, when coordinates are metric, target distribution homogeneity indices, r’ etc. are computed from clusterized 

and not from original coordinates. Were they computed from the original coordinates, they would be distorted: the 

graph plotting metric against ordinal position, from which r’ indices are conceptually derived, would look 

staircase-like when the coordinates of the targets of a cluster are separated by minuscule differences. For instance, 

try to plot the raw coordinates: (1, 1.01, 2, 2.01, 3, 3.01, 4, 4.01, 5, 5.01) against their ranks (1, 2, …, 10): the 

(staircase-like) plot is very far from the identity function, and this strong deviation is witnessed by r’ parameters, 

even though the coordinates are really close to the perfectly regular (1,1,2,2,3,3,4,4,5,5) distribution. This is why 

clustering is needed before computing r’ in order for it to faithfully reflect the degree of regularity. 

 

Fourth, when coordinates are metric, there is a difference between solutions. In the metric solution, we have seen, 

MPH and SD are computed from different coordinates (original and clusterized, respectively); in the ordinal 

solution, both MPH (which becomes MOH) and SD are computed from the same coordinates, the clusterized-and-

                                                 

15 There is no precise knowledge about were the ‘true’ MPH, i.e. ν, is in this case. Indeed, we know that MPH is an unbiased estimator of ν 

when target distribution is perfectly regular, and here the distribution is very far from regularity – it is massively skewed. However we do 

know that ν is not .5, because the patient did not just detect the leftmost target, and it cannot be .4, because that would have corresponded 

to a smooth, continuous violation of equispacing without any clustering at all [e.g. with an exponential scale X=(0,12,43,129,364,1000)]. We 

are certainly much closer to the clusterized case (we have three pairs of very close targets) than to the unclusterized, curvilinear-scale 

distribution, so a good guess is a value that is much closer to .5 than to .4, hence the .495 value. 
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ranked ones. SD needs the clusterization operation otherwise it might be biased by the 1-1.7 factor mentioned 

above, and needs ranking otherwise the statistical models used in our simulations, and which assumed equispaced 

positions, would not hold. MOH needs the ranking for the same reason (otherwise the equispaced statistical model 

would not hold), and needs clustering otherwise a large centripetal bias (in Fig. WM-4’s Example B, .4 instead of 

.495 or so) rather than a small centrifugal bias (in the same example, .5 instead of .495) would be chosen. 

 

Fifth, when coordinates are metric, clusterization must be performed before ranking. If one reversed the order, 

ranking would cancel metric information altogether, so one would not be able anymore to understand which targets 

were metrically very close to each other, and could hence be put together in a same cluster. So, clusterization 

before and ranking afterwards is the only possible order. Look at Fig. WM-4’s Example A: had we ranked the data 

before clustering them, we would have ranked X=(0,2,499,501,998,1000) into X’= (1,2,3,4,5,6), which would then 

have remained the same after clusterization, X”= (1,2,3,4,5,6), so the precious metric information of pairwise 

proximity between the targets would have been lost. Recall that this is a serious problem, because failure to 

acknowledge the clusterization structure in the data results in sizeable distortion in SD estimation. By contrast, if 

coordinates are not been metric, but jut ordinal (Example C in Fig. WM-4), no such proximity information exists in 

the data, so the direct ranking X’=(1,2,3,4,5,6) is completely justified. 

 

6.2. Decision trees for ‘metric’ target coordinates 

In this Section, we will explain down to fine detail how the criteria for assessing ‘target distribution homogeneity’ 

work when coordinates are metric (see the box containing the six parameters r’overall, r’spacing, r’TIES, MPT, MPP, and 

TIES in the top panel of Fig. WM-4). Since sizeable departures from homogeneity of target distribution threaten the 

validity of the statistical model (and hence, of the diagnosis), such criteria are of crucial importance. 

Decision trees regard the criteria used for deciding whether or not SD (Fig. WM-5) and p-value (Fig. WM-6) 

estimates are reliable, and for advising the user to rely on the metric solution (MPH) or rather on the ordinal 

solution (MOH). 

 

Decisions are shown in the rightmost columns of the Figures, and are depicted in green when they are positive (SD 

or p-values can be estimated on grounds of our machinery) and in red when they are negative (our machinery does 

not have a solution). The terms reported in the Figures are clarified in the various Sections that follow. 

 

Section 6.3 will show and discuss the decision trees (Figs. WM-7 and WM-8) to be used when target coordinates 

are ordinal. 

 

The complex criterion for determining whether a target distribution is sufficiently homogeneous for guaranteeing 

reliability to our statistical model
16

 was labelled ‘general criterion of target distribution homogeneity’ in the 

decision trees (Figs. WM-5 and WM-6). To explain and justify such a criterion we need to summarize the kinds of 

violation to target distribution homogeneity. 

 

6.2.1. r’ indices 

Departures from a perfect distribution of targets – the one that was used in the model’s simulations – are easy to 

diagnose. It is sufficient to measure how far the distribution is from ‘perfection’, that is, an array of perfectly 

equispaced positions, each of which contains an identical number of targets (that is, the type of distribution we 

were able to simulate in our Monte Carlo study). One way to do so is to plot each metric position containing targets 

against its cumulative proportion of targets, and compute the Pearson correlation between them. The cumulative is 

the proportion of targets lying either to the left of the metric position, or at the metric position (half of the latter are 

considered in the computation). Thus, the (0,1)-standardized position X is plotted against Y = 

proportion(t<X)+.5[proportion(t=X)], where t is the position of a given target) and compute the Pearson correlation 

r between X and Y. With the perfect distribution, all points lie on a straight line and r=1; any suboptimal 

distribution has r<1. We soon realized that with very small numbers of positions, for instance 2 or 3, r can be very 

misleading as it equals 1, or values very close to 1, even in cases of massively heterogeneous distributions (e.g., 

position A containing 10 targets, and position B containing a single target, yield r=1!). Hence we developed an 

alternative version of r, which we called r’. This new score does not consider the discrepancy of the points from the  

                                                 

16 No Monte-Carlo simulations were run (yet) in this case, we just used intuitively prudent criteria. 
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regression line, like r does; rather, r’ considers the discrepancy of the points from the identity function X=Y. More 

precisely 

𝑟′ =  
√

𝑆𝑆𝑚𝑜𝑑𝑒𝑙𝑋
𝑆𝑆𝑚𝑜𝑑𝑒𝑙𝑋+𝑆𝑆𝑛𝑜𝑖𝑠𝑒𝑋

+√
𝑆𝑆𝑚𝑜𝑑𝑒𝑙𝑌

𝑆𝑆𝑚𝑜𝑑𝑒𝑙𝑌+𝑆𝑆𝑛𝑜𝑖𝑠𝑒𝑌

2
     [Equation 8]  

 

Where SSmodelX = Sum of Square deviations (in X) of the predicted points (those lying over the identity line) from 

their mean, SSnoiseX = Sum of Square deviations (in X) of the observed points from the identity line, and so on. Note 

that since the predicted points are over the identity line, SSmodelX = SSY, SSmodelY = SSX and SSnoiseX = SSnoiseY. 

Also r’ proved suboptimal when there are exactly 3 positions. Hence we derived a r” measure, to be used only 

when there are exactly 3 target positions. With r”, instead of taking the simple cumulative as Y, we take 

 

cum’(X) = st.pos(X) + [obs.p.t(X) – exp.p.t(X)]   [Equation 9]  

 

where st.pos(X), or standardized position of X, is the metric position X rescaled to the (0,1) space (0=leftmost target 

position, 1=rightmost target position); obs.p.t(X), or observed proportion of targets in X, is the proportion of targets 

in position X out of all targets; exp.p.t(X), or expected proportion of targets in X, is the proportion of targets one 
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would expect if the distribution were perfectly homogeneous (i.e. T/G, where G = number of clusters = number of 

occupied positions).
17

 

 

The r’ measure is sensitive to any kind of departures from a perfect target distribution. We shall call it r’overall, 

because it contains two separate components, which can be disentangled. What can be imbalanced and move r’ 

away from 1 is either the distribution of positions themselves (equispacing violation), or the distribution of targets 

across positions (ties homogeneity violation). For instance, an imbalance in the distribution of positions is when 

targets are in positions (5, 4, 3, 2, 1, 0, 2, 5): we have five positions in the left half of the display and only 

two in the right half (an instance of ‘eccentricity’); or, (100, 99, 98, 97, 96, 96, 97, 98, 99, 100): here 

positions are very dense at the far left and far right, and absent in the centre. Both cases are examples of violation 

of the equispacing assumption. Else, even though target positions are perfectly equispaced, the positions on one 

side might host more targets than the positions on the other side [e.g. targets in positions (3, 2, 1, 0, 1, 1, 1, 2, 2, 

2, 3, 3, 3), another instance of ‘eccentricity’]; or, lateral positions might host more targets than positions in the 

centre: (3, 3, 3, 3, 2, 1, 0, 1, 2, 3, 3, 3, 3) – violations of the ties-homogeneity assumption, where by ‘ties’ 

we mean multiple targets presented at an identical position along the studied dimension. 

Such a distinction is critical because the first type of violation, the one about equispacing, invalidates MPH and 

related statistics, but does not invalidate the non-parametric version of MPH, MOH. By contrast, violation of ties-

homogeneity invalidates both MPH and MOH. 

The disentanglement of the two components of r’overall, which we named r’spacing and r’ties, is not a difficult 

enterprise. For obtaining r’spacing, we just erased the ties from the cumulative used in r’overall computation – thus the 

cumulative took into account each position as if it contained a single target. For obtaining r’ties we just replaced the 

X metric positions, used in r’overall computation, with the ordinal positions [rank(X)]. 

Thus we obtained a triplet of indices, r’overall, r’spacing and r’ties, which are nicely interconnected and form a powerful 

and specific system of detection of target distribution irregularities (heterogeneities) of any kind. The three indices 

are the pairwise correlations of three variables: (i) X, the set of ‘pure’ metric positions (each position with multiple 

targets is counted only once), (ii) rank(X), the order of the X positions, and (iii) cum, the cumulative proportion of 

targets across the X positions. Hence: 

 

r’overall = corr(X, cum)    [Equation 10]  

r’spacing = corr[X, rank(X)]    [Equation 11]  

r’ties = corr[rank(X), cum]    [Equation 12]  

 

This nice triangular correlational pattern is such that if one of the two components (r’spacing or r’ties) is 1, r’overall  

equals the other component. 

Before discussing the way to combine information from the three indices to obtain a single criterion, let us explore 

a second, parallel family of indices which capture one specific kind of violation in target distribution homogeneity. 

 

 

6.2.2. Indices measuring target distribution eccentricity 

Albeit the r’ indices are exhaustive, in the sense that they capture any kind of departure from perfect homogeneity 

of distribution, there is one specific kind of departure that is likely to be particularly detrimental for our statistical 

model, so we introduced further indices to measure it. We refer to ‘eccentricity’ as we named it in the above 

Sections – a distribution is eccentric (or has an ‘eccentric-mean’ violation of homogeneity) when its mean is not 

exactly halfway between the positions of the two extreme targets. Also here we have three indices, which mirror 

the r’ ones. The first, ‘overall’  index is obvious, and comes out directly from our definition of eccentricity: it is the 

location of MPT, the mean position of all targets, with respect to the geometrical midpoint of the display (i.e. the 

interval between the two extreme targets); by scaling the leftmost target’s position as .5 and that of the rightmost 

as +.5, the MPT should ideally be zero: if MPT is away from zero, this indicates overall eccentricity of target 

distribution (in analogy with r’overall). Exactly as r’overall, also MPT has two components, which correspond to the 

different possible causes of eccentricity in the distribution: one is when target positions are not centered at zero 

[e.g. (5, 4, 3, 2, 1, 0, 2, 5): a violation of the equispacing assumption], another is when the frequency of 

targets across positions is not centered at zero, albeit positions per se might be perfectly equispaced [e.g. (3, 2, 

                                                 

17 For consistency with other analyses, before deriving all the indices discussed, r’ , r”, MPT, MPP, TIES , we replaced the position of each 

target with the mean position of the cluster the target belongs to. 
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1, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3): a violation of the homogeneity of the distribution of ties]. Thus we have two more 

indices: the first is MPP [the Mean Position of (pure) Positions X], that is, the MPT after having excluded the ties 

(each position is counted only once irrespective of how many targets it contains), which quantifies the degree 

eccentricity due to the spacing of targets; by contrast, the degree of eccentricity due to ties distribution is assessed 

by looking at the TIES index, that is, the MPT that takes into account the ordinal positions rather than the metric 

positions of all targets. Both MPP and TIES, like MPT, range .5 to .5. Thus we ended up with three new indices, 

MPT (the index for detecting and measuring ‘overall eccentricity’), MPP (the index for detecting/measuring 

eccentricity due to spacing) and TIES (the index for detecting/measuring eccentricity due to the distribution of ties). 

 

It is with these three indices that the logic of combination to produce the decision tree is easier to explain. A 

thorough analysis of the spectrum of possible eccentricity patterns in target distributions is reported in the 

following Sections 6.2.2.1 ‘Combining…’ and 6.2.2.2 ‘Consequences…’. In short, if two of the three indices 

(including MPT) indicate sufficient centrality (i.e. are close enough to zero), interpretation of MPH in the classical, 

metric scale (reflecting physical space) and statistical tests regarding MPH are safe
18

; else, if the TIES index is 

close enough to zero, data can be interpreted non-parametrically, i.e. referring to the ordinal solution MOH, and all 

statistical tests regarding MOH are safe; if the TIES index is far from zero, we are getting too far from the realm of 

our simulations, and we are not sure what the behaviour (SD and p-value) of MPH/MOH is in those cases. Details 

as to the logic that led us to such a structure follow. 

 

We arbitrarily set the limits for defining an index as ‘close enough’ to zero in this way: |MPT|<.05 (5% of the 

overall display width); |MPP|<.1; |TIES|<.1 (10% of the overall display width). Given that MPT is the most 

important indicator of eccentricity, this was required to be closer to zero than any of its MPP and TIES 

components.
19

 

 

6.2.2.1. Combining different eccentric-mean  violations 

Overall eccentricity, as measured by MPT, expresses a combination of spacing eccentricity, as measured by MPP, 

and ties eccentricity, as measured by TIES. We shall refer to the latter two as the ‘components’ of overall 

eccentricity. If the two components are opposite (e.g. a leftward MPP and a rightward TIES), they tend to cancel 

each other out, and the target distribution is decently centered: our statistical model is still valid, provided that the 

two components are not extreme. Indeed the main factor invalidating our statistical model and Equations (see 

Section 4 ‘Monte Carlo simulations and model Equation’) would be an overall eccentricity – hence if MPT is 

decently central [no more than 5% away from zero, .05 in the (.5,.5) MPT scale], and the two components MPP 

and TIES are not too extreme (i.e., at least one of them is not farther than .1 from zero), this would validate our 

simulations, SD, z and p-values. If, by contrast, a close-to-zero MPT is the result of opposite, pathological 

components (e.g. TIES= .3, MPP= +.3), the MPH sample distribution is unlikely to be regular and to be well 

approximated by our model which was based on perfectly regular target distributions. 

This holds for the metric index of neglect (MPH). The ordinal index of neglect (MOH) is not influenced by spacing 

at all; hence MPP and its effects on MPT are irrelevant in this case: only the TIES parameter counts, and needs to 

be close-to-zero (not farther than .05 from it) for the MOH statistical model to be valid. 

Therefore we decided that for the MPH statistical model to be valid, MPT (by the .05 limit) and at least one of the 

two components (MPP or TIES, by the .1 limit) must be close to zero. This guarantees overall centrality (MPT) 

with little variation between components (if one of them is close to zero, as MPT, variation between them must be 

relatively small). 

By contrast, the validity of the statistical model for the ordinal neglect index (MOH) only depends on TIES, which 

needs to be close to zero (by a .05 limit). 

Let us explore all the possible practical cases. To derive them, one needs to understand what the behavior of MPT 

is as a function of its two components. The relationship is not intuitive. If the two components are eccentric 

towards the same side (e.g. rightwards), MPT tends to reflect their sum [e.g. try positions 

(0,5,10,15,19,24,29,33,33,35), which have MPP=.039, TIES=.0375: MPT=.08]. If the two components are 

eccentric on opposite sides, MPT also tends to reflect their algebraic sum, thus falling somewhere in between them 

                                                 

18 If TIES is the only criterion that is not met, beware that the ordinal solution (MOH) is not interpretable: only the metric (MPH) one is. 
19 Parallel limits (also arbitrary) were set for the r’ indices: r’overall>.975, r’spacing >.95, r’ties >.95.  When TIES and r’ties are evaluated to decide 

whether the ordinal solution MOH is valid, they are screened with the stricter criteria, |TIES|<.05 and r’ties >.975. 
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[e.g. (0,0,5,5,10,15,19,24,29,33,35), TIES= .08, MPP= .04: MPT= .04]. However if TIES=0 and MPP=.1, 

MPT=.1. Let us simplify with the following approximate mathematical rules: 

 

(i) If one component (TIES or MPP) is zero, MPT equals the non-zero component (unlike an algebraic 

sum); 

(ii) if both components are eccentric towards the same side, MPT is more eccentric than both, on that same 

side (like an algebraic sum); 

(iii) if the components are eccentric towards opposite sides, MPT falls somewhere in between them (like an 

algebraic sum). 

 

Table WM-7 shows all possible combinations of the conditions of the three measures. The first classification is 

whether zero, or one, or two, or three of the measures are out of the ‘close-to-zero’ range [(.05, .05) for MPT, 

(.1, .1) for MPP and TIES]. When 1 is out, this may be either one component, or MPT. If the out-one is a 

component, the only possibility for this to happen is that it is slightly out (e.g. .12), the MPT is about .04, and the 

other component must be about .08, on the opposite side (it cannot be 0, because if a component is 0 and the other 

is biased, MPT is automatically biased as the biased component, and we would be treating another case). When 2 

are out, the other one is implied to be ‘in’ – simplifying, 0. If the zero parameter is a component, we know that 

MPT automatically ‘copies’ the other, biased component (e.g. TIES=0, MPP=.12, MPT=.12). If the zero parameter 

is MPT, the only way to have the other ones out is to place them on opposite sides, like .12 and .12. When all 3 

are out, they are either all on the same side (in this case MPT is necessarily more extreme than both components) 

or two are on one side and the other on the opposite side (in this case, the two on the same side cannot be the two 

components, because if they were, MPT would be on their side too, and more extreme; so, the two components 

must be on different sides and the MPT must fall somewhere between them, but still out of the (.05, .05) ‘close-to-

zero’ range. 

 

6.2.2.2. Consequences on the validity of the statistical model and Equations 

Table WM-7 reports all of these possible topologies, and relative conclusions on the validity of the statistical model 

and Equations reported in the above Section 4 ‘Monte Carlo simulations and model Equation’. We specifically 

refer to the validity of the Equations used for computing SD, and to the validity of the Gaussian approximation 

assumed for computing z-scores (applied when there are at least 3 Hits or 3 Omissions). 

Recall that validity of the metric-solution statistical model (MPH) requires MPT to be close to zero (with the .05 

cutoff) and at least one component to be close to zero (with the .1 cutoff); validity of the ordinal-solution statistical 

model (MOH) only requires the TIES component to be close to zero (with the .05 cutoff). 

Also recall that no systematic simulation study has been performed yet (the ways a distribution of targets can be 

distorted are virtually infinite, so this is a very demanding enterprise): the present indications are intuitive, and 

likely to be on the prudent side. 

 
Metric-
solution 
criteria 

   Validity of statistical Equations 

TIES MPT MPP Metric (MPH) Ordinal (MOH) 

0 out 0% 0% 0% Yes Yes 

1 out (2 in) % 5% 10% Yes NO 

 12% 4% 8% Yes NO 

 4% 8% 4% NO Yes 

2 out (1 in) 0% 12% 12% NO Yes 
 12% 12% 0% NO NO 
 12% 0% 12% NO NO 

3 out 12% 24% 12% NO NO 
 30% 18% 12% NO NO 

Table WM-7 Validity of the statistical model and Equations as a function of all possible 
combinations of biases in the three indices of eccentricity of  target distribution mean. 

Indices vary in the range (50%,50%). Indices that are biased (away-from-zero) 
according to the criteria used for the validity of the Metric solution MPH (i.e. within the 
±5% range for MPT, within the ±10% range for TIES AND MPP) are reported in red; in 
one case, the TIES index is inside the ±10% range for validity of the Metric solution MPH, 
but it is outside the ±5% range for validity of the Ordinal solution MOH – this is reported 
in blue. 
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In the first column of Table WM-7, the number of ‘in’ and ‘out’ indices, according to the metric-solution criteria, 

are listed; nested under these broad cases, various combinations are shown. 

When 1 index is off-zero (‘out’ in Table WM-7), we have three cases. 

If only MPP is out, the ordinal-solution model is valid (equispacing is irrelevant here), unless the TIES index, 

which is ‘in’ according to the metric-solution criterion (|TIES|<.1), is ‘out’ according to the ordinal-solution 

criterion (|TIES|<.05). Metric-solution model is fine, because it depends more on the overall centrality (MPT) than 

on single components; the MPP bias is compensated for by the close-to-zero TIES that brings the MPT within 

close-to-zero limits.  

If only TIES is out, again the metric-solution model is saved by a compensation of opposite effects: the eccentric 

TIES is counterbalanced by the opposite MPP eccentricity, leading to close-to-zero MPT. Two out of three are 

close-to-zero, including MPT, so the criterion for validity of the metric-solution model is achieved. By contrast, the 

ordinal-solution model is invalid: here only TIES counts, and this is biased (the effect of the spacing bias, MPP, 

which might have counterbalanced the TIES bias, is nullified because ranks, and not metric positions, are used with 

the ordinal solution). 

If only MPT is out, both components must have small biases on the same side (otherwise the schema is impossible). 

The metric-solution model is invalidated by the eccentric MPT; the ordinal-solution model is valid because TIES is 

close-to-zero. 

When 2 indices are off-zero, the metric-solution model is automatically invalidated, because it requires two 

indices to be close-to-zero. The case with close-to-zero MPT, and with MPP and TIES biased on opposite sides, is 

particularly interesting: this can be obtained for example, by extreme, funny distributions like:  

(0,0,0,0,0,0,0,0,0,0,100,101,102,103,104,105,106,107,108,109,110). MPP is .375, TIES is .214, but MPT=0! The 

distribution is definitely weird, and does not guarantee that either statistical model would apply at all. As for the 

ordinal-solution model, this is valid when the only close-to-zero index is TIES. 

When 3 indices are off-zero, neither model is valid. 

 

6.2.3. Final criteria for signaling the invalidity of the statistical model 

On grounds of the study exposed in the previous Section, we prepared the following rules for establishing whether 

or not the statistical model is reliable. 

 

(i) If two of the three eccentricity indices (MPT, MPP, TIES), including MPT, are close-to-zero (.05 range 

for MPT, .1 range for MPP and TIES), the metric-solution model and Equations (MPH) are valid. 

(ii) If TIES is close-to-zero (.05 range), the ordinal-solution model and Equations (MOH) are valid. 

(iii) Otherwise, statistical analyses (SD, z-scores, p-values) are unreliable: one can just look at absolute 

MPH/MOH values. 

 

However, recall that three more general indices r’ were proposed, which capture eccentricity as well as other forms 

of distributional irregularities. We reasoned that since eccentricity is likely to produce the most detrimental effects 

on the MPH statistical model, one way to give more weight to eccentricity in the decision about the model’s 

reliability, is to combine eccentricity indices (MPT, MPP, TIES) with r’ indices in the decisional structure (Figs. 

WM-5, WM-6): 

 

(i) If two of the three eccentricity indices (MPT, MPP, TIES), including MPT, are close-to-zero (.05 range 

for MPT, .1 range for MPP and TIES), AND two of the three r’ indices (r’overall, r’spacing, r’ties), including 

r’overall, are close-to-1 (.975 limit for MPT, .95 limit for MPP and TIES), the metric-solution model and 

Equations (MPH) are valid (this is the ‘general criterion of target distribution homogeneity’ shown 

in the decision trees in Figs. WM-5 and WM-6). 

(ii) If TIES is close-to-zero (.05 range) AND r’ties is close-to-1 (.975 limit), the ordinal-solution model and 

Equations (MOH) are valid (this is referred to as ‘Both criteria regarding ties homogeneity are met’ 

in the decision trees in Figs. WM-5 and WM-6). 

(iii) Otherwise, statistical analyses (SD, z-scores, p-values) are unreliable: one can just look at absolute 

MPH/MOH values. 

 

Note a feature regarding the criteria for validity of the metric-solution model (i). By analogy with the larger range 

we used for defining the components MPP and TIES as ‘close-to –zero’ (.1<MPP<.1; .1<TIES<.1) with respect 

to the range used for the overall MPT index (.05<MPT<.05), we used a limit for defining the r’ components as 

‘close-to-1’ (r’spacing>.95;  r’ties >.95) that was larger than the limit we used for the overall r’ index (r’overall>.975). 
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Recall that when there is one only Hit or one only Omission, p-values are obtained directly from the target 

distribution (Equations for deriving SD, and the Gaussian approximation, are not used), so all of the problems listed 

above regarding distributional irregularities do not apply. 

 

6.2.4. T/G and number of possible MPH/MOH positions 

In Fig. WM-6 T/G is the ratio between the number of targets T and the estimated number of clusters G (see Section 

4: ‘Monte Carlo simulations and model Equation’ for details). Since G is estimated on grounds of the empirical 

target distribution, T/G may well not be an integer. In these cases T/G is rounded to the closest integer (this is 

necessary when, see Fig. WM-6, T/G is directly used, or when it is indirectly used to determine the number of 

possible MPH positions). 

The number of possible MPH positions is a relevant parameter for deciding whether a Gaussian approximation is a 

good one. Suppose that MPH could assume just 3 positions (e.g. with 2 targets MPH can be .5, 0, or .5): no 

continuous density function (like the Gaussian) could be meaningfully used to approximate so discrete a 

distribution. We arbitrarily set a limit at 10 discrete positions as the minimal number for accepting the Gaussian 

approximation. By running specific Monte Carlo simulations we could obtain the minimal Hit (or Omission) counts 

necessary for achieving the desired 10 discrete MPH positions, as a function of number of clusters G and of number 

of targets per cluster T/G (Table WM-8). 
 

   Number of Targets per Cluster = T/G 

  1 2 3 4 5 6 7 8 9 10 11 12 

N of clusters=G 2 - - - -      10 11 12 
 3 - - -  5 5 5 5 5 5 5 5 
 4 - - 3 3 3 3 3 3 3 3 3 3 
 5 - 3 3 3 3 3 3 3 3 3 3 3 
 6 - 2 2 2 2 2 2 2 2 2 2 2 
 7 - 2 2 2 2 2 2 2 2 2 2 2 
 8 - 2 2 2 2 2 2 2 2 2 2 2 
 9 - 2 2 2 2 2 2 2 2 2 2 2 
 10 1 1 1 1 1 1 1 1 1 1 1 1 

Table WM-8 Minimal Hit (or Omission) counts needed to have at least 10 MPH positions (a 
criterion for justifying the Gaussian approximation). E.g. if one has 5 clusters (row G=5) and 4 
targets per cluster (Column T/G = 4), Hit count (or Omission count) must be at least 3 to satisfy 
the criteria. If G>10, the limit is always 1. If T/G>12, limits are identical to those for T/G=12. If 
T/G is not an integer, round it to the closest one. If a cell does not report a numerical limit, 
achieving 10 MPH positions is impossible. A ‘-’ sign indicates that T<10, a condition that was 
never simulated (June 2018). 

 

 

6.3.  Decision trees for ‘ordinal’ target coordinates 

Figs. WM-7 and WM-8 below show the decision trees that are applied when coordinates have just an ordinal 

meaning. The terms are the same as explained in the previous Section 6.2 for the metric-coordinates case. 

The general structure and logic is identical; the only difference is that there is no need to assess equispacing of 

target positions because the ordinal nature of the coordinates make this task meaningless. Hence two only of the 

parameters we introduced are now meaningful, that is, the ones assessing the distribution of ties: TIES and r’ties. 

With these parameters, the same limits as those used for the most important scores in the metric-coordinates case 

(MPT and r’overall), are to be applied: .05<TIES<.05; r’ties>.975). 
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7. STATISTICAL POWER AND BAYES FACTORS 

So far (June 2018) we provided the users of the Worksheet with diagnostic p-values. Computation of p-values has 

been relatively straightforward as MPH distributions proved to be nicely close to Gaussian. However these 

distributions concern MPHs obtained from perfectly flat Hit rate functions. In order to compute Power or Bayes 

Factors (BF) one would need to simulate the performance of several virtual patients with neglect, whose Hit rate 

function is very different from the constant function characterizing normal subjects. We expect such neglect-related 

MPH distributions to be skewed, thus a thorough, supplementary Monte Carlo study would be needed. However 

the main problem one has to face is that while the non-neglect ‘curve’ is known and univocal – it is the flat function 

varying only for the ceiling parameter (the height of the constant value), neglect curves are ambiguous, as they also 

vary for slope and location. Thus one MPH average value (one putative neglect severity level) corresponds to 

infinite combinations of slope and location, i.e. to very different MPH distributions.  

We believe there is no theory-free way to specify what MPH distribution one should choose for Power/BF 

computation and why: a theory of neglect is necessary (see next Section 7.1 for examples). However our initial idea 

was that of keeping neglect theorization as far from our method as we could, in order to preserve its generality of 

application; thus we momentarily gave up developing a machinery for computing Power and BF because that 

would detract from the generality of the method. 

 

 

 

If Targets < 10
Simulations were not run with 

T<10: UNKNOWN st.dev

st.dev
If at least 10 

targets

Both criteria regarding ties-

homegeneity are  met

Reliable st.dev estimate 

available via the Equation

Fig. WM-7

Coordinates 

have 

ORDINAL 

meaning

One or both criteria regarding 

ties-homegeneity are NOT met

Simulations run so far are not 

valid (they used very regular 

target distributions): UNKNOWN 

st.dev

If Targets < 10
Simulations were not run with T<10: UNKNOWN 

p-value

if Hits or Omissions = 1 

[Kurtosis non satisfactory & 

st.dev inaccurately modeled, 

but…]

Exact Solution obtained by directly computing 

the percentile position of the only H (or 

Omission) in the distribution of targets. Valid 

no matter if ties or equispacing violations

If T/G close to 1
Large Table of percentiles and interpolated 

values was obtained by simulation

p-value
Both criteria regarding ties-

homegeneity are  met

if Hits or Omissions = 2 

[Kurtosis non satisfactory & 

st.dev inaccurately modeled]

If at least 10 

targets
If T/G higher than 1

Unknown shape of the distribution - too many 

simulations needed to provide percentile 

Tables. UNKNOWN p-value

if Hits or Omissions > 1

If Hits or Omissions > 2

If at least 10 possible MOH 

values (making gaussian 

approximation viable)

p-value obtained via gaussian approximation 

(reliable st.dev estimate available)

One or both criteria regarding 

ties-homegeneity are NOT met

If less than 10 possible MOH 

values [Gaussian 

approximation non 

satisfactory]

Distributions are very discrete and gaussian 

approximation is not satisfactory. UNKNOWN p-

value

Fig. WM-8
Coordinates 

have 

ORDINAL 

meaning

Simulations run so far are not valid (they used 

very regular target distributions) - UNKNOWN p-

value
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7.1. Examples of effects by neglect-related theoretical constructs on parameters 

 

There are several examples of different theoretical constructs one could make – here we only report some of them. 

(i) If a shift of the frame of reference were included in the pathogenesis of neglect (Karnath et al., 1998), 

this factor would directly influence the location parameter, which, however, would also reflect the 

extension of the attentional/representational scotoma. Moreover, if the degree of shift in the reference 

frame changed during the task, this variation would increase the final slope parameter. 

(ii) If the domain of the spatial representation that is damaged could shrink or enlarge, e.g. adapting to the 

size of the physical ‘workspace’ (e.g. the table, or the sheet, or the room, etc.), this variation would 

affect the slope parameter. 

(iii) If multiple spatial representations were used in a task, each of which has a very steep neglect gradient 

at different locations, the overall slope parameter would reflect the range of locations covered by the 

different representational components. 

 

8. PASSWORD TO UNBLOCK THE CELLS IN THE WORKSHEET 

 

If the reader wishes to look at the internal codes of the Worksheets (at least, of the versions that were published in 

2017-2018), single sheets can be unblocked by using the following password: sgrassatore. The authors take no 

responsibility for the detrimental effects of changes in the code. 
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