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ABSTRACT

In order to better disentangle ‘perceptual’ and ‘response’ biases in neglect patients, Bisiach and his co-workers devel oped
anew version of the ‘landmark task’. In their version, subjects are required to choose which is the longer (first condition)
or the shorter (second condition) of the two portions of a pre-bisected horizontal line. Two indices were proposed, for the
purpose of measuring perceptual and response bias respectively. The perceptual bias index (PB) is the constant error across
conditions, while the response bias index (RB) is the degree of response consistency between conditions. Although valuable
in aclinical context, these indices are not mathematically independent of one another. Furthermore, they do not exploit al
of the information available in a given set of landmark data, since the responses made at the different landmark locations
are all averaged together. To overcome these problems, we propose two new indices that can be derived from the revised
landmark task. Our perceptual bias index is the Point of Subjective Equality (PSE) — the mean landmark location that
appears to be halfway along the line. The response bias index, M, is the mean probability of making a response that
opposes the patient’s subjective midpoint. PSE and M are mathematically independent of each other and use most of the
landmark information. The method and its theoretical foundation are summarized, and illustrative data obtained from brain
damaged patients and control subjects are presented. Finally, computational procedures are provided for both PSE and M.
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INTRODUCTION

Bisiach and his colleagues (for example,
Bisiach, 1993) have argued persuasively that many
tasks traditionally used to diagnose and measure
visuospatial neglect are ‘impure’, in that different
patients perform abnormally on them for different
reasons. It was first proposed by Heilman and
Valenstein (1979) that rightward errors made by
patients with |eft-sided neglect in the standard line
bisection task might not necessarily reflect a
perceptual neglect of the leftward portion of the
line, but rather a disorder that they called
‘“directional hypokinesia’ (Heilman et al., 1985).
According to this idea, the patient might make line
bisection errors due to a response bias favouring
rightward over leftward movements. Bisiach et al.
(1990) made the first attempt to separate what they
called ‘perceptual’ and ‘premotor’ effects in the
line bisection task, by pitting the two in opposition
to each other. They devised a task involving
pulleys, in which the subject had to make a
leftwards movement in order to move a bhisection
pointer rightwards, and vice versa. They found that
some neglect patients were dominated by the visual
position of the pointer, and would make large
leftward movements in order to make their usual
rightward line bisections. Others were reluctant to
make such leftward movements, so that their
response bias partly or completely overcame their
usual tendency to make rightward bisection errors.

Some authors have, however, criticized
methodologies such as this for creating unnatural
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conflicts which patients might resolve in ways that
reflect little about the causation of their neglect
symptoms (Mattingley et a., 1998). A smple task
that avoids such problems of interpretation was
devised by Milner and his colleagues (Milner et a.,
1992, 1993). In what they called the ‘landmark
task’ (in recognition of its forma resemblance to a
task used in non-human primate studies: Pohl,
1973), the subject was asked to make a simple
decision on each trial, either to respond to the left
or to the right. The subject was presented with a
series of horizontal lines each of which had a mark
located part-way aong it, and was asked to point
to the end of the line that the mark was closer to.
The critical trials were those on which the
landmark was located exactly midway along the
line. Milner and colleagues reasoned that if a left
neglect patient had a perceptual bias, then
responses should be made mainly leftwards — the
patient should indicate that the left half of the line
looked shorter. If, however, the patient had no such
perceptual bias, but instead a response bias, then if
anything pointing responses should be made
rightwards, as the patient should be biased against
making leftward responses. Harvey et al. (1995)
subsequently reported that seven out of eight left
neglect patients did indeed point left on nearly all
of the critical landmark trials, athough one patient
performed in the converse fashion. This result
might, however, have provided an underestimation
of the extent to which response biases cause line
bisection errors. If patients first made a cognitive
decision as to the location of the landmark before
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responding, they might then be less hiased toward
making a rightward response than when making a
bisection mark on an empty line.

By adding a simple extension to the landmark
task procedure, Bisiach et al. (1998a) overcame
this objection, and provided a means for making
commensurate estimates of perceptual bias and
response bias. As well as asking patients in one set
of trials to point to the shorter section of a pre-
bisected line, they asked them to point to the
longer section in a separate set of trials. Patients
with a response bias would presumably still tend to
point rightwards in both sets of trials, i.e,
irrespective of instructions; while those with a
perceptual bias should point leftwards in the
‘shorter’ trials, but rightwards in the ‘longer’ trials.
Thus, averaging the two rightward scores should
give an improved measure of response bias (RB),
while averaging the first leftward score with the
second rightward score should yield an equally fair
measure of perceptual bias (PB). Therefore,

RB = (RS + RL)/2
PB = (LS + RL)/2

where LS (Left Shorter) and RS (Right Shorter) are
the overall percentages of leftward and rightward
responses made in the ‘shorter’ judgement
condition, while LL (Left Longer) and RL (Right
Longer) are the percentages of such responses
made in the ‘longer’ condition. (Here and
henceforth, indices computed on the overall set of
data, i.e. averaging across all of the landmark
locations, will be named with upper-case letters,
eg., LS RS, LL, RL, while indices computed on
the data from a single landmark location will be
named with lower-case letters, e.g., Is, rs, Il, rl.)
These measures allowed the investigators to
estimate response bias and perceptual bias
separately, whereas Milner et al.’s measure (Milner
et al., 1992, 1993) could only provide an estimate of
the relative influence of the two factors. Thus for
example, a non-significant behavioural asymmetry
in their original version of the test could not
distinguish between (@) the presence of equally large
opposing biases or (b) an absence of any bias at all.
Bisiach et al.’s (1998a) new version of the
landmark task, and the two measures of bias that
they extracted from it, constitute a valuable
methodological advance, which has aready yielded
several new insights (Bisiach et al., 1998a, 1998b,
1999). There are, however, two limitations
associated with their procedures. First, unlike the
origina method of Milner and colleagues, the new
version sums all of the responses made by the
subject over all of the trials, regardless of the
location of the landmark. This averaging procedure
wastes an opportunity that Bisiach et al.’s method
provides. Since equal numbers of trials are given at
landmark positions across a wide range, there is
much more information available for estimating the

perceptual bias than is used by the averaging
method.

The second limitation concerns the lack of
mathematical independence between the two
measures of bias (see Appendix C for a more
detailed discussion of this concept). This can best
be seen by plotting the range of possible co-
variation of the indices of response hias (RB) and
perceptual bias (PB) that emerge from Bisiach et
a.’s method of analysis. The indices of rightward
bias (RB and PB) derived as indicated above have
built-in limits to their mutual variability. As shown
in Figure 1, the more extreme a subject’'s PB, the
less the possible range of variation of RB: that is,
the value of RB is artificially truncated at high or
low values of PB (and vice versa). In other words,
the two indices of bias are in principle not
independent of each other.

This means that the use of these particular
measures will inevitably produce diagnostic errors.
For instance, a patient with severe output-related
neglect (ORN) will always be classified as having
little or no input-related neglect (IRN). In reality,
however, we would know amost nothing about the
patient’s IRN. As an extreme example, consider the
case of a patient responding rightwards in al trials
(in both test conditions): he would obtain PB = 50,
i.e. no IRN at all, whereas the correct conclusion
should be ‘IRN unknown’'. Necessarily, a response
that never changes from trial to trial can convey no
information about the patient’s perception of the
different lines used. But even in less extreme cases
of ORN, the artificial truncation prevents the
subject from achieving extreme PB scores; for
instance, if RB = 75, it is impossible to obtain a
PB score higher than 75 or lower than 25. In
general, therefore, the absolute degree of IRN will
be underestimated. Only subjects with no ORN at
al would be free from this bias in the estimation
of IRN. Another diagnostic error can occur for
different reasons. Using Bisiach et a.'s PB score, a
patient who guesses in some of the trias (e.g. as a
consequence of a comprehension disorder, or
perhaps of a ‘frontal’ syndrome) would obtain an
underestimate of his actual degree of IRN deficit.
In the extreme case of a patient who always
guesses, the mean PB value would be, in the long
run, 50, i.e. an apparent absence of bias. Yet in
reality of course we know nothing about his
perceptual bias.

The indices RB and PB have a practical utility
in the clinical context, in that they provide a quick
and easy differential diagnosis between IRN and
ORN. Nevertheless, for the reasons listed above,
they are less useful for deriving scientific
conclusions as to the nature of the two deficits, and
more generaly for the classification of patients in
experimental studies with respect to both IRN and
ORN.

The intention of the present paper is to propose
a different mathematical model for analysing
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Fig. 1 — Mutually constraining ranges of variation of Bisiach et al!s indices PB (horizontal axis) and RB (vertical axis). When the
performance of a single patient is represented as a point (PB,RB) in the plot, only points within the shaded diamond are possible.

(Adapted from Bisiach et al., 1998a)

individual data derived from using Bisiach et a.’'s
improved version of the landmark task. The basic
problem of Bisiach et al.’s model is that the
relationship between the deficits to be measured
(IRN, ORN) and the indices used to measure them
(PB, RB) is not transparent. To remedy this lack of
transparency, our intention is to specify more
explicitly how IRN and ORN might operate to
determine behaviour in the landmark task. This line
of thought leads to the formulation of two new,
mathematically independent, indices, which avoid
the problems of dependence between the ranges of
variation of the two measures.

There is also a more general problem that has
often been ‘neglected’ in neuropsychological
research. This is the sample-to-sample instability of
a patient’s test score, i.e. the level of uncertainty
about its ‘real’ value. Consider, for instance, a
patient who when faced with two 180-mm lines,
bisects one 30 mm to the left and the other 50 mm
to the right of the objective midpoint. The mean
bisection error would be + 10 mm, well beyond the
normal range. One might be tempted to conclude
that this patient has a rightward lateral bias on the
basis of such a ‘local estimate’. Yet given the huge
variability of the patient’s bisection performance, a
second testing session could easily produce a mean
bisection point of —10 mm! The problem of
uncertainty about the real value of a parameter is
particularly important in the context of Bisiach et
al.’s revised landmark task. As we saw, when a
patient has a very severe ORN, the task provides
very little information for determining his real level

of IRN. A new method for analysing data from the
revised landmark task should provide a means of
taking this uncertainty into account, in order to
minimize diagnostic errors.t

IRN, ORN, AND THE LANDMARK TASK
Input-Related Neglect (IRN)

The landmark task was initially conceived in
classical psychophysical terms as a method of
determining the point of subjective equality (PSE)
between the two sections of a bisected line (Milner
et al., 1992, 1993). Asking an observer which of
two collinear segments is the longer, and varying
the position of the landmark defining the two
segments, should alow an estimation of the point
where the two segments are subjectively identical.
By its very nature, the experiment implies the
existence of such a point, and provides all of the
data needed for estimating it. IRN, in this context,
could only cause a shift, either to the left or to the
right, of the PSE. Of course IRN may have a
different significance with respect to other tasks
sensitive to neglect, for example search tasks.
However in the present context of the line-
bisection task and the landmark task, we propose
to identify IRN operationally with a pathological
displacement of the PSE.

INevertheless, local estimates that are too unstable to be used for diagnostic
purposes, may still be useful in group studies.
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As for the specific input-related mechanisms
inducing a shift of the PSE, there are two main
possibilities. The horizontal dimension of space
might be misperceived by, e.g., left IRN patients, in
such a way that physically equal distances look
progressively shorter the more on the left they are
located (see, e.g., Milner, 1987; Bisiach et al., 1996).
Therefore, the PSE will lie some distance to the right
of the objective midpoint. Alternatively, a rightward
shift of the PSE might result from an abolished
representation of the leftmost regions of the line (see
Bisiach and Vallar, 1988; Bisiach et ., 1998b).

Whichever is the case, the PSE is assumed to
reflect the outcome of the visual processing of the
stimulus, i.e., its internal spatial representation.
IRN is defined as an alteration of this
representation.

Output-Related Neglect (ORN)

Whether or not there is a shift of the PSE, there
could be a bias on the ‘output’ side, i.e., a bias in
favour of ‘Right’ (or ‘Left’) responses. This bias
might be manifested as a reduction in (explicit or
implicit) eye movements, limb movements, or both,
towards the opposite side. Consider a subject who
has a tendency to favour ‘Right’ responses
(rightward ORN). When the right segment looks
longer, he will have no difficulty in selecting it as his
response in the ‘longer’ condition. The same holds
for trials in which the right segment looks shorter in
the ‘shorter’ condition. The deficit will only arise
when the left segment looks shorter in the ‘ shorter’
condition, or longer in the ‘longer’ condition. Here a
‘leftward’ outcome of visual processing will need to
be strong enough to overcome the patient’s baseline
tendency to respond rightwards. Sometimes it will
be strong enough, sometimes it will not. The
proportion m of times in which the tendency to
respond rightwards is not overcome is our proposed
measure of rightward ORN.

Symmetrically, a measure of leftward ORN
would be the proportion of times in which a
‘rightward’ outcome of visual processing is not
strong enough to overcome a baseline tendency to
respond leftwards. Here the leftward direction of m
will be indicated by negative sign (— m). Like
previous investigators, we assume that ORN will
have the same influence whether the subject is
being asked which is ‘the longer’ or ‘the shorter’
of the two line segments. While perhaps
guestionable, this assumed constancy of ORN
across conditions is implicit in all attempts to
disentangle IRN and ORN. Thus the difference
between the percentage of rightward responses in
the two conditions (‘longer’ vs. ‘shorter’) was
taken to measure IRN by Bisiach et al. (1998a).2

°E.g., RS = 70%, RL = 100%. PB = (30% + 100%)/2 = 65%, which leads
to the diagnosis of a rightward IRN.

Similarly Bisiach et a. (1990) made an analogous
assumption in their ‘pulley’ experiment. It
was assumed that a patient with a purely
‘premotor’ neglect would produce equal and
opposite bisection errors in the ‘congruent’ and
‘incongruent’ conditions (since in their task the
perceptual result of identical motor acts would be
equal and opposite). The constancy assumption was
thus built into the logic of these experimental
designs — without it, analysis would have become
impossible.

DERIVATION OF THE TwO INDICES

The subjective midpoint of the line (SM) is the
location that, on a given trial, would generate two
subjectively identical segments. In accordance with
standard psychophysical models, the SM is
assumed to vary randomly across trials, and be
distributed along the line following a normal
probability density function with a mean equal to
the PSE (our measure of IRN), and a certain
standard deviation SD (see Figure 2A). Consider a
particular landmark location T. When the subject’s
SM lies to the left of T the left segment will ook
longer (and the right will look shorter). This will
happen in a proportion p of cases, corresponding to
the area under the curve lying to the left of T.
Conversely, in the remaining proportion 1 — p of
cases, when SM falls to the right of T, the right
segment will look longer (and the left will look
shorter). Now, if we plot p as a function of
landmark location, we obtain the cumulative curve
of the normal distribution, the inflection point of
which lies at the PSE (see Figure 2B). To estimate
the PSE it is thus necessary to plot the p values
that have been obtained experimentally on a similar
graph, and to construct a cumulative normal curve
that best fits that cloud of points. In Bisiach et a.’s
(1998a) version of the task, we have nine landmark
locations, so we need to compute the p value for
each landmark location, partialing out the effects
of any local variation in ORN. How can we
estimate p values avoiding any response bias
effects? There is a direct analytic solution, which
also has an intuitive geometrical analogue.

The lower part of Figure 2 shows proportions
of responses as vertical bars. Shaded areas indicate
‘Right’ responses, open areas indicate ‘Left’
responses. The whole vertical bar represents the
overall set of responses in a specific condition.
Figure 2C illustrates the proportions of responses
given to landmark location T by a subject whose
SMs vary as shown in Figure 2A. This subject has
no ORN: thus, he will choose the Left as the
shorter in a proportion p of cases, and, consistently,
the Right as the longer in a same proportion p of
cases (the shaded section in the ‘shorter’ condition
is of the same size as the open area in the ‘longer’
condition). If, however, this same subject had some
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Fig. 2 — A: The two collinear stimulus segments are illustrated in white (left) and grey (right), T being the landmark location. The
subjective midpoint (SM) varies across trials according to a normal distribution, whose mean is the Point of Subjective Equality (PSE).
B: The PSE can be estimated by fitting the experimental points that relate landmark locations to p proportions by means of a cumulative
curve. The PSE will be the abscissa of the inflection point. C, D, E: The determination of the probability of ‘left shorter’ and ‘right
longer’ responses according to the model is shown by representing probabilities as vertical extensions, for a patient without ORN (C),

with rightward ORN (D) and with leftward ORN (E).

rightward ORN, he would be reluctant to give
‘Left’ responses. On a proportion m of trials in
which his ‘ORN-free’ twin (Figure 2C) said ‘Left’,
he would instead say ‘Right’. Thus, a proportion m
of the open bars in Figure 2C would become
shaded. The result is shown in Figure 2D.
Conversely, if our patient had leftward ORN, he
would be reluctant to give ‘Right’ responses. Thus,
a proportion m of the shaded bars in 2C would
become open, obtaining the pattern in Figure 2E
(we conventionally put the negative sign in front of
m here, to indicate the leftward direction of ORN
and distinguish it from rightward ORN).

We do not directly know p and m from the
experiment, but we can deduce them. The
quantities we know from the experiment are the
proportions of ‘left shorter’ (Is) and of ‘right
longer’ (rl) responses for that landmark location.
(As noted earlier, quantities computed on the data
from a single landmark location are expressed with
lower-case letters). As illustrated in Figure 2D,
when ORN is rightward,

Is=(1-p) (L-m)
rh=(1-p)+pm
These two equations constitute a simple first-

degree system, with only two unknowns (m and p),
Is and rl being known from the experimental data.

It is thus easy to calculate in an unequivocal way
the values of m and p. They will be given by:

p=@-r)/ (@A +Is—rl)
m=rl—-Is

(1)
(2)

Similar reasoning can be applied in the case of
a leftward ORN (Figure 2E). This time,

Is=(1-p)+p(=m)
n=@1-p) 1+m

The solution of these equations is:

p=@-=Is)/ (1 +rl -1
m=rl—Is

3
()

It will be noticed that the estimation of m is
rl — Is for both rightward and leftward ORN
[formulae (2) and (2') are identical]. For p,
however, the two formulae are different. Formula
(1) must be applied when ORN is rightward, i.e.
when m is positive, and formula (3) must be
applied when ORN is leftward, i.e. when m is
negative. In mathematical terms:

m=rl—Is

and
ifm>0,p=@Q-r)/@Q+Is=rl)
ifm<O,p=@Q-I19/@+rl-1I9
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These equations can be combined to give a
compact formula for p:

p=[1-max (Isrh] /[1+ min (Isrl) —max (Isrl)]
4

We have thus obtained the sample estimates of
the two parameters, m and p, for a single landmark
location T.

We are now able to compute our final indices
of IRN and ORN. After having obtained the p
values for each landmark location (as shown
above), it will be possible to derive the PSE by
interpolating them with a normal cumulative curve
(Figure 2B). And for an overall score of ORN, we
can average out the m values from each landmark
location, and obtain M.

How DO OUR INDICES RELATE TO THOSE
OF BISIACH ET AL. (1998a)?

The ORN index M is a linear transformation of
Bisiach et al.’s RB score [M = (RB/50) — 1]. It
thus contains exactly the same information.
According to our arguments, in other words, RB
was already an unbiased estimator of ORN. M
(ranging from O to 1 in its absolute value) is the
probability that a response will be made in the
direction that ‘contradicts’ the patient’s subjective
midpoint. For example, if on a given trial the SM
falls to the right of T (i.e. the left segment looks
shorter than the right) and yet the subject responds
‘right shorter’, then the response directly
‘contradicts’ the SM. The sign of M is an indicator
of the direction of such ‘contradictory’ responses
(+ = rightward, — = leftward).

On the other hand, our parameter p has an
important difference in meaning from Bisiach et
al.’s PB. PB is a measure of a subject’s constant
bias throughout the test, irrespective of landmark
location. In contrast, p is defined as the probability
of SM falling to the left of a given landmark
location. Thus p values can be plotted against
landmark locations to obtain the PSE.

The theoretical definition of our two parameters
M and PSE guarantees their mathematical
independence. M and PSE do not have the problem
of the artificia truncation of the ranges (as PB and
RB, see Figure 1). Every possible value of PSE
can combine with every possible value of M, and
vice versa. Thus, patients with ORN will never
obtain underestimates of their degree of IRN (as
can happen with PB), but will always be assigned
an unbiased IRN score. Another advantage of the
elimination of the artificial truncation is that any
statistically significant correlation between the two
indices M and PSE in a group of patients can be
interpreted in neuropsychological terms and not as
the result of a mathematical artefact. Furthermore,
our parameters allow the researcher to understand
whether a patient guessed in many or all of the

trials. Such a patient will yield an especialy high
SD in the cumulative normal function (which
would thus appear abnormally shallow). This
should prevent misleading underestimates of the
degree of IRN, and false negative decisions of no
IRN. Appendix B reports more details as to how
guessing behaviour can be detected.

CONFIDENCE INTERVALS

As we pointed out in the Introduction,
inferences about the visual experience of a subject
who has a very severe ORN or guesses on most of
the trials are uncertain, and become impossible
when ORN is maximal, or when there is guessing
behaviour across-the-board. Therefore, it is
necessary to provide the researcher with a measure
of the wuncertainty (i.e. sample-to-sample
variability) of the obtained estimates, in order to
minimize the likelihood of incorrect diagnoses. We
will propose a diagnostic criterion based on
confidence intervals for this purpose.

Confidence Interval for the PSE

The 95% confidence interval for the PSE is the
region on the stimulus line with a 95% probability
of including the true PSE position. This CI gives a
clear idea of the level of uncertainty about the PSE
location: if it extends, say, from —30 to +70 mm
with respect to the line's centre, then we would
have little useful information about the location of
PSE!

Making use of the Cl, we studied the level of
uncertainty of PSE estimates as a function of ORN.
It is clear that the presence of ORN makes less
information available about the PSE. We already
discussed the extreme case where a patient has the
maximum possible rightward ORN (M = 1): he
would choose the right segment on all of the trials.
The information available about PSE is zero here:
its Cl is infinite. By means of data simulation, we
found that in cases of ‘very severe’ ORN, i.e,
when the absolute value of M is higher than 0.95,
the CI could be as wide as 100 mm. As |M|
decreases, however, the width of the Cl decreases,
falling to between 2 and 22 mm when M = 0. The
use of the confidence interval in the diagnostic
procedure thus allows the investigator to take the
level of uncertainty into account. Instead of
diagnosing an IRN when the simple PSE value is
outside of the normal range (as in the ‘local
estimate’ diagnostic criterion), we can require that
the entire CI for the PSE lie outside of the normal
range (‘ confidence interval’ diagnostic criterion). In
other words, to diagnose a deficit, the normal range
and the CI must not overlap (see Armitage and
Berry, 1994, pp. 98-99, for a similar logic, and
Appendix A of this paper for further details; see
also Toraldo, 2003).



Analysis of the landmark task 421

More generally, this criterion solves the
problem of unstable scores. In the Introduction, we
offered the example of a patient bisecting two lines
at — 30 and + 50 mm from the true centre. The
mean bisection point (+ 10 mm), which is outside
of the normal range, might suggest a diagnosis of a
lateral bias. The Cl of the mean bisection point
would instead overlap the normal range, and
therefore, lead to an opposite conclusion. In this
way, a possible false positive is avoided.

Confidence Interval for M

There are two types of ‘judgemental
inconsistency’ between the two response conditions
of the Bisiach landmark task. The first type, ‘left
inconsistency’, is when a subject says that the left
is the shorter (in the ‘shorter’ condition), and that
the left is the longer (in the ‘longer’ condition), for
the same stimulus. The second type, ‘right
inconsistency’, is when a subject says that the right
is the shorter in one condition, and that the right is
the longer in the other, again for the same stimulus.
Our index M is the difference between the
frequencies of these two types of inconsistency.
When M = 0, the two types of inconsistency are
equally frequent. When M > 0, there are more
‘right’ than ‘left’ inconsistencies; and when M < 0,
‘left inconsistencies are more frequent.

Both of the factors, ORN and perceptual
uncertainty, will influence the parameter M. ORN
induces a preference for one side, and thus will
increase the frequency of only one type of
inconsistency (e.g. ‘right inconsistencies’). This
will move the M score one way (e.g. towards
positive values). By contrast, if a subject is
uncertain about the stimulus, he will produce
inconsistencies of both types (‘left’ and ‘right’).
This will move the M score (from sample to
sample) both ways, thus increasing its variance.

So, perceptual uncertainty renders our measure
of ORN unstable. The higher the perceptual
uncertainty (measurable as SD, i.e. the shallowness
of the cumulative curve, Figure 2B), the less stable
the M estimate. Since brain damaged patients
are likely to be perceptually uncertain (see e.g.
their increased variance in bisection responses,
Marshall and Halligan, 1990, table 1), their M
estimate will be unstable, and vary widely from
sample to sample. This means that a patient could
easily obtain an M value out of the normal range,
not because of an ORN, but because he is
perceptually uncertain. A repetition of the same
experiment might well produce an M value within
the normal range, or even outside it on the opposite
side.

This perceptual uncertainty argument is a
possible explanation of the surprisingly high rate at
which patients were diagnosed as suffering from
ORN in Bisiach et al.’s (1998a) sample, and
especially, of the relatively high proportion of

patients showing a paradoxical leftward ORN after
right hemisphere damage.

The ‘confidence interval’ diagnostic criterion
can thus be used in this context as well. Since it
takes into account the sample-to-sample variability
of the score, it will prevent a diagnosis of ORN on
grounds of an unstable M local estimate. In
summary, an ORN will be judged to be present
only when the CI for M, and not just M itself, is
entirely outside of the normal range.

Accumulating Data from more Testing Sessions

If the Cls for the PSE or M are wide, the
researcher can consider giving the patient further
testing sessions. Under optimal conditions, i.e.
when the real PSE and M do not vary across
sessions, the width of the ClI will reduce by
approximately 35% with a second session, and by
another 20% with a third session. For example, a
Cl for the PSE as wide as 30 mm on session 1 will
reduce to 19 mm on session 2 and to 15 mm on
session 3.

EmpPIRICAL EXAMPLES OF THE USE OF THE NEW
INDICES

The Landmark-V task (Bisiach et al., 1998a)
was administered to a set of 18 brain-damaged
patients. Seven of them showed neglect on the
Albert line cancellation test. They had al suffered
a right hemisphere stroke, with the exception of
D.L., who showed persistent neglect following a
stroke in the left hemisphere (see: Pritchard et al.,
2001). We also tested 12 controls, from whom we
obtained ranges of normal scores (Table Il). Table |
reports the raw Landmark data from the patients;
Table Il reports the PSE and M estimates obtained
from each subject by applying the techniques
specified in Appendix A (see the website:
www.masson.it/cortex/database/PC_Toraldo_40
_3.htm or the website: www.toraldo.it/landmark/
index.htm for automatic computation of the
indices). The interested reader can apply those
techniques to the individual data sets of Table | and
compare his results with those listed in Table II.

Output-Related Neglect (M values)

Table Il reports both the local estimate and the
confidence interval for M, to be compared against
the normal range at the bottom of the column [see
‘M; CI(M)" in Table Il]. A diagnosis relying on the
M loca estimate (completely equivalent to Bisiach
et a.’s criterion using their RB index) defines five
patients as suffering from ORN. However, only one
of them suffers from ORN according to our
confidence interval criterion. If one considers the
high instability of M, in other words, the local
estimate diagnostic criterion produces four false
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TABLE |
Landmark-V Data (length of the line = 180 mm) for 17 Right Hemisphere Patients and one Left Hemisphere Patient (D.L.)

Transection position (mm from the centre)

- 60 -30 -15 -5 0 5 15 30 60
SL. LS 6 6 6 6 4 0 0 0 0
RL 6 6 6 6 5 1 0 0 0
D.B. LS 6 5 5 0 0 0 0 0 0
RL 6 6 6 0 0 0 0 0 0
J.B. LS 6 6 6 6 6 0 1 0 0
RL 6 6 6 6 5 1 0 0 0
J.C. LS 6 6 6 6 6 0 0 0 0
RL 6 6 6 6 6 0 0 0 0
JL. LS 6 6 6 6 6 5 0 0 0
RL 6 6 6 6 6 6 0 0 0
A.L. LS 6 6 6 6 5 0 1 0 0
RL 6 6 6 5 4 3 0 0 0
M.M. LS 6 6 6 6 4 0 0 0 0
RL 6 5 6 6 3 0 0 0 0
CS. LS 6 6 6 5 6 5 3 2 0
RL 6 6 6 3 3 2 0 1 0
R.D. LS 6 6 6 6 5 3 1 0 0
RL 6 6 6 5 3 1 0 0 0
N.McL. LS 6 6 4 4 3 3 1 0 0
RL 6 6 6 4 4 4 2 1 1
L.McN. LS 6 6 6 4 3 2 0 0 0
RL 6 6 6 6 4 2 0 0 0
W.Mcl. LS 6 6 5 6 4 5 1 0 0
RL 6 6 5 6 6 6 1 0 0
M.McP. LS 6 6 6 6 6 5 2 5 0
RL 6 6 5 6 6 6 3 5 1
W.P. LS 6 6 6 6 6 6 6 6 0
RL 6 6 6 6 6 6 6 3 0
JH. LS 6 6 6 5 4 4 3 0 0
RL 6 6 6 5 6 4 3 2 0
R.M. LS 6 6 6 6 5 2 0 1 0
RL 5 5 5 5 2 2 0 2 1
L.A. LS 6 6 6 5 4 4 4 0 0
RL 6 4 6 5 6 4 2 2 0
D.L. LS 6 6 1 0 0 0 0 0 0
RL 6 3 0 0 0 0 0 0 0
Legend: LS = Left Shorter responses (out of 6); RL = Right Longer responses (out of 6).
TABLE Il
Results of the Analyses
Bisiach et a.’s method New model’s parameters
Patient Can PB; CI(PB) PSE Cl (PSE) SD M; Cl (M)
SL. 53.7; 47.4, 60.0 0.94 [0.01, 1.87] 1.07 0.04; —0.03, 0.10;
D.B. 31.5°% 26.8, 36.2]° —-10.00° [-12.25,-7.75]° 171 0.04; —0.01, 0.08
J.B. 56.5*; 50.7, 62.2 2.50* [1.48, 3.52] 0.85 —-0.02; —0.08, 0.04]
J.C. 55.6; 55.6, 55.6 2.50* [1.48, 3.52] 0.85 0.00; [0.00, 0.00
JL. 65.7*; 62.4, 69.1]* 10.00* [7.75, 12.25]* 1.71 0.02; —0.01, 0.05
A.L. 55.6; 47.2, 63.9 0.94 [0.02, 1.86] 1.07 0.00; —0.08, 0.08]
M.M. 50.0; 43.0, 57.0 0.42 [-0.59, 1.43] 142 —0.04; —0.11, 0.03
C.S. + 61.1%; 498,724 10.13* [0.94, 19.31] 17.13 -0.22°% —0.34,-0.11]°
R.D. 55.6; 46.4, 64.7] 3.13* [0.46, 5.79] 4.46 —-0.11°% —0.20, - 0.02]
N.McL. + 56.5*; 43.1, 69.8 5.00* [-1.04, 11.04] 12.25 0.13*; [0.00, 0.26
L.McN 52.8; 43.3, 62.3 3.00* [0.12, 5.88] 5.34 0.06; —0.04, 0.15
W.Mcl. 63.9%; 55.4, 72.4 10.00* [3.80, 16.20]* 11.64 0.06; —0.03, 0.14]
M.McP. 79.6*; 70.0, 89.2]* 33.75* [21.55, 45.95]* 19.72 0.04; —0.06, 0.13
W.P. + 86.1%; 81.7, 90.6]* 45.00* [37.25, 52.75]* 5.12 —0.06; —0.10, - 0.01]
JH. + 66.7*; 55.2, 78.1 12.50* [6.05, 18.95]* 11.46 0.07*; —0.04, 0.19
R.M. + 54.6; 425, 66.8 7.83* [-0.20, 15.86] 16.73 —0.09%; —-0.21, 0.03
L.A. + 64.8*; 52.8, 76.9 12.50* [6.10, 18.90]* 11.46 0.00; -0.12, 0.12
D.L. (Ibd) - 20.4°; 14.8, 25.9]° —2250° [-26.61, —18.39]° 2.56 -0.07; -0.13,-0.02]
Normal range (n = 12) [44.0, 55.8] [-2.23, 2.11] <141 [-0.076, 0.061]

Legend: Values in italic indicate scores (or confidence intervals) outside the normal range reported at the bottom. Normal ranges were derived from the mean
+ 1.96 standard deviations of our 12 controls' scores, with the exception of SD where a unidirectional 5% cut-off was set at the mean + 1.645 standard
deviations. *Left Neglect, °Right Neglect. Can: Albert line cancellation performance, + Left neglect, — Right neglect. PB, CI(PB): Bisiach et al.’s (1998a)
parameter and its 95% confidence interval. PSE: estimated point of subjective equality, in mm of distance from the true centre, — leftwards, + rightwards.
CI(PSE): 95% confidence intervals for PSE. SD: estimated standard deviation (a measure inversely proportional to the slope of the normal cumulative). M:
measure of Output Related Neglect, alinear transformation of Bisiach et al.’s RB; CI(M): 95% confidence interval for M.
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positives out of 18 patients. Considering only
patients with neglect on cancellation, three out of
seven cases are false positives. This strengthens our
suspicion that some proportion of the ORN cases
in Bisiach et al.’s (1998a) sample (all of whom had
neglect on classical clinical tests) were false
positives. As in Bisiach et al.’s group, we also had
a non-negligible proportion of paradoxica leftward
ORN (three out of five patients showing ORN), as
predicted by the hypothesis that these originate
mainly from the instability of M, rather than from
a true ‘contraversive’ ORN. Also in favour of the
instability hypothesis is the fact that four out of
five patients ‘with ORN’ (according to the local
estimate criterion) showed considerable perceptual
uncertainty (SD values higher than 11 mm). That
is, their subjective midpoints could fluctuate from
trial to trial across a range of more than 44 mm on
a 180-mm line). As discussed in the previous
section, a patient with strong perceptual uncertainty
is quite likely to obtain a M value artificially out
of the normal range, even in the absence of any
reliable ORN.

Input-Related Neglect (PSE)

Table Il reports the results of the computational
method proposed in Appendix A.

The ‘confidence interval’ diagnostic criterion
was applied: Cls were compared to the normal
range (reported at the bottom of Table Il), and an
IRN was diagnosed when a ClI did not overlap the
normative interval. According to the local estimate
criterion, Bisiach et al.’s PB diagnosed IRN in 11
out of 18 patients, while the PSE did so in 15 out
of 18 patients (see relevant columns). Therefore,
the PSE appears a more sensitive measure of IRN
dready as a local estimate. Nevertheless, as can be
seen in the column CI(PSE), the Cls for the PSE
can be quite large, thus justifying the use of the
prudent CI criterion. Applying this method, we
found that while the CI for PB did not overlap the
normal range in five patients, the ClI for PSE did
so in eight patients (see relevant columns).

The comparison between patients J.L. and C.S.
illustrates the advantage of the CI criterion. Both
patients showed a displacement of the PSE around
10 mm to the right of the objective midpoint.
Nevertheless, they differed widely in the stability
of their judgements. Patient J.L. obtained p = O for
the landmark located 5 mm to the right of centre,
and p = 1 for the neighbouring location, 15 mm to
the right of centre. In other words, he judged, with
only one exception, the + 5 mm landmark as to the
left of centre, and the + 15 landmark as to the right
of centre. The high stability of his judgements is
reflected in his CI, which is very narrow (4.5 mm)
and does not overlap the normal range. A rightward
IRN is thus reasonably diagnosed in this case. On
the other hand, patient C.S. was very uncertain
(high SD): her judgements were inconsistent with

the landmark located 5 mm to the left of centre (p
= 0.25), and even with the landmark located 30
mm to the right of centre (p = 0.8). At 18 mm, the
Cl for her PSE reflects this high uncertainty, and it
slightly overlaps the normal range. This casts
doubts on the true presence of a rightward IRN: on
a repetition of the same test in similar conditions
C.S. might well have produced, for instance, a
displacement of 1 (and not 10) mm to the right, i.e.
a PSE location within the norma range. Therefore,
the stricter Cl-based diagnostic criterion avoids the
misinterpretation of an eccentric PSE due to
perceptual uncertainty as the genuine effect of an
IRN.

To compare our Cl diagnostic criterion to that
of Bisiach et al. ceteris paribus, confidence
intervals for PB were also computed (see Table I1)3
and the same ‘non-overlap’ logic was applied. Our
PSE index proved to be a more sensitive measure
of perceptual bias than PB (three more patients
were classified as having a perceptual bias, 8/18
vs. 5/18). Of course we expected that our measure
would be more sensitive to IRN than PB, because
PSE does not have the constraint of the *diamond’
(see Figure 1). Nonetheless, this advantage would
be even greater if we had patients with more
severe ORN (the higher ORN, the stronger the
constraint on PB scores).

A Fortuitous Advantage

Case L.A., on the other hand, illustrates another
advantage of our PSE method. L.A. had a zero
ORN score (M =0, i.e. RB = 50). When as in this
case no ORN is present at all, one would expect to
find an identical sensitivity of our method and that
of Bisiach et al. in diagnosing IRN. Nonetheless,
L.A. was classified as normal using the Cl for
PB and as suffering from IRN using the CI
for PSE (see Table Il). L.A. behaved in a bizarre
way when presented with landmarks at — 30 and +
30 mm (see Table |). These were perceptually
unambiguous to him: according to his PSE and SD
estimates, — 30 mm had probability 0% to be
perceived as to the right of centre, and + 30 mm
had probability 6% to be perceived as to the left of
centre. On + 30 mm, he chose the right as longer
twice out of six trials. this might in principle be
explained in terms of rightward ORN. Except that
on — 30 mm, he twice chose the left as longer!
Overall, his behaviour is more consistent with the
idea that he simply got ‘distracted’ (perhaps
confusing ‘longer’ with ‘shorter’ at some
conceptual or linguistic level). Although rare, these
errors can be observed also in normal subjects. one

3Confidence intervals for PB were computed on the basis that PB is, in
essence, the average of nine average proportions, each average [(Is + rl)/2]
being relative to one landmark location. Therefore, the logic for obtaining
CI(PB) is the same as that used for obtaining CI (M) (see Appendix A for
details). In fact, CI(PB) is always 100 times as wide as CI(M).
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of our control subjects made four of them, one on
each of the four more extreme landmark locations
(- 60, — 30, + 30, + 60). In any case, while Bisiach
et al.’s method gives weight to such bizarre
responses in the computation of PB, the
mathematics of our method fortuitously eliminates
their effect on the estimation of p (and thus of
PSE). Specifically, this mathematical cancellation
happens when distractions (i) occur on landmark
locations unambiguous for the subject, and (ii)
affect the trials of a specific landmark location in
only one response condition.

In conclusion, the PSE measure is more stable
than PB, in that its variance is less increased by
‘distractions’. This might explain why it
discriminates better between normal subjects and
patients also when ORN is zero.

GENERAL Discussion

We are proposing an alternative method for
analysing the data from Bisiach et al.’s revised
version of the landmark task. Our parameter M and
Bisiach et al.’s RB both express the degree to
which the subject makes logically inconsistent
judgements across conditions, favouring one
direction of response. The sole advantage of M is
that it has a clearly defined theoretical meaning: it
says how likely it is that a response inconsistent
with the spatial representation of the line will be
made.

On the other hand, our new parameter p is
different from Bisiach et al.’s parameter PB in a
number of ways. As previously noted, p eliminates
the logical problems with PB. When a patient does
not provide any information about his visual
processing (e.g., choosing the right on all trials),
parameter p is consistently ‘unknown’, while
Bisiach et al.’s PB classifies such a patient as
having no perceptual bias. When some information
about visual experience is available in the data,
parameter p extracts it by partialling out the effects
of ORN. Thus, it provides an unbiased estimate of
IRN. Parameter PB instead underestimates the
degree of IRN as a function of the absolute degree
of ORN, as shown in Figure 1. Therefore, p
provides, in general, a more sensitive measure of
IRN.

A second difference regards the information
used to arrive at a measure of IRN. This deficit
may reflect a pervasive perceptual distortion of the
patient’s visual experience, which is exemplified in
other perceptual tasks as well, such as matching
(e.g. Milner and Harvey, 1995) and line extension
(e.g. Bisiach et a., 1998b). By its very nature, the
landmark task is a method for deriving the point on
a line that produces two subjectively equal sections
(the PSE). Thus, the landmark task measures the
perceptual distortion associated with IRN purely in
terms of a shift of the PSE. The derivation of the

PSE requires the analysis of differential response
frequencies across the various landmark positions:
it therefore exploits al of the information provided
by the experiment. By contrast, Bisiach et a.'s PB
is computed as an average asymmetry score across
the whole range of stimulus lines, thus losing much
of the available information.

In group studies, the use of PSE guarantees an
important advantage. Since the PSE is
mathematically independent of M, it will thus
unambiguously allow the identification of any
empirical relations between the phenomena of IRN
and ORN, which can thus be fruitfully investigated
without problems of interpretation.

For diagnosing a deficit in single-case studies,
on the other hand, we would recommend the use of
confidence intervals, because PSE and M can be
quite unstable. A diagnosis relying on the PSE and
M ‘local’ estimates may in fact be seriously risky.
Bisiach et al. (1998a) reported that a relatively
large number of patients showed paradoxical
response biases, in the context of a surprisingly
large number of subjects with a response bias in
one direction or the other. This even occurred in
their ‘Landmark-V’ task, where a verbal rather than
a motor response was required. By using the
‘confidence interval’ criterion, which partials out
the effects of behavioural instability, the frequency
of ORN cases in our sample diminished
dramatically with respect to that obtained by means
of the ‘local estimate’ criterion. We therefore
surmise that many of Bisiach et al.’s ‘response
bias' cases were false positives, obtained because a
‘local’ estimate of RB — a linear transformation of
M — was used instead of an ‘interval’ estimate in
the diagnostic procedure.
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APPENDIX A

EstimaTiON OF IRN AND ORN FROM LANDMARK
DATA

An electronic worksheet for the automatic
computation of all the indices can be downloaded
from the website www.masson.it/cortex/database/
PC _Toraldo 40 3.htm or from www.toraldo.it/
landmark/index.htm. It executes all the procedures
specified in this Appendix.

Computation of the index M of ORN and of its
confidence interval

The mean value M across all landmark
locations may be computed as follows, where rl,
., I, Is;, ..., |s, are sample proportions from
individual landmark locations 1 to t (t is the overall
number of landmark locations: t = 9 in Bisiach et
al., 1998a).

M :%(rll+...+r|t—Isl—...—I§)

Parameter M, ranging from — 1 (maximum
leftward ORN) to + 1 (maximum rightward ORN),
has a precise meaning: it is the average probability
of aresponse going in the direction opposite to that
indicated by the input processing. Such a definition
in probability terms allows an estimation of the
standard error for M, i.e. of its reliability. In fact,
since M is the average of all the m values, which
in turn are differences between independent
proportions (rl and Is), M will have a distribution
close to the norma. Therefore, M’s standard error
can be estimated as:

EM
_1 frll(l—rll)+...+rlt(l—rlt)+Isl(l—I§) +... 4§ (1-1s)
t\ N
where N is the number of repetitions of each
stimulus line in each response condition (N = 6 in

Bisiach et a.’s procedure). The 95% CI for M will
then be [M — 1.96 SE (M), M + 1.96 SE (M)].

Graphical Representation for Deriving PSE and SD

In order to derive PSE and SD, data need to be
represented on a plot like that illustrated in Figure
3A. The p-values obtained for each landmark
location by means of formula (4) should be entered
graphically in the plot. A small dot (m) should be
drawn at the appropriate height over the
corresponding landmark location. No dot should be
marked if p is unknown. If all the p-values are
unknown, the plot will remain empty and the
computation procedure will stop with the
conclusion ‘unknown PSE’. If, instead, some p-
values are known, and therefore, there are some
dots in the plot, this should be evaluated according
to the following rules:

(1) Find the ‘anchor points'. Scan the plot from
left to right, and mark with a black triangle (A,
e.g. see Figure 3A) the last consecutive dot with p
= 0, starting from the leftmost landmark location
(= 60). This will be the ‘left anchor’. Then scan the
plot from right to left, and mark in the same way
(A) the last consecutive dot with p = 1. This will
be the ‘right anchor’. If the leftmost dot does not
have p = 0, then the left anchor (A) will be placed
on the point (— 90, 0), i.e., on the left endpoint of
the line at height p = 0. If the rightmost dot does
not have p = 1, then the right anchor (A) will be
placed on the point (90, 1), i.e., above the right
endpoint of the line at height p = 1.

(2) Mark with a black circle (@) all the dots
lying between the two ‘A’ points.

(3) If there are at least two ‘@’ points, special
treatment has to be given to any landmark
locations yielding unknown p values and which lie
between a ‘A’ and the closest ‘®’. An open
triangle (A, ‘left open anchor’) should be drawn
with height O at the rightmost of any such locations
lying between the left ‘A’ and the closest ‘@’.
Symmetrically, if there are any unknown-p
landmark locations between the right ‘A’ and the
closest ‘@', the leftmost of them must be assigned
a‘/A’ at height 1 (‘right open anchor’).

Computation of the PSE

The PSE is the inflection point, and SD reflects
the shallowness, of the normal cumulative curve
that best fits the points of the plot. To find that
curve, a regression procedure should be applied.
Any regression procedure can converge to a
meaningful solution only in particular situations,
viz. when there are at least two ‘@’ points. We
propose solutions (a) and (b) for other cases, in
which there are one (a) or zero (b) such points.
Solution (c) is proposed to substitute for a
regression procedure in cases where there are at
least two ‘@’ points.

(a) One ‘@’ point.

In this case a fair solution is to regard the
normal cumulative function as passing through the
‘@’ point and as having an ‘intermediate’ gradient.
The ‘intermediate’ gradient is defined as halfway
between the maximum gradient and the minimum
gradient still compatible with the experimental
data. The maximum possible gradient is the
function passing through ‘@’ by means of a vertical
segment (SD = 0). In this case, the PSE is the
abscissa of ‘@’ itself. The minimum gradient
compatible with the data was defined as the steeper
of two lines (approximating the curved gradients),
one passing through ‘@’ and the left ‘A’, and
another passing through ‘@’ and the right ‘A’ (see
Figure 3B). After having chosen the steeper line,
its PSE is computed and averaged out with the
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Fig. 3 — A: Example of plot representing the experimental
data, with landmark location (i.e. the physical line) on the
horizontal axis and p on the vertical axis. P-values for the
landmark locations —5 and O are unknown, therefore no dots (m)
are placed in the plot for those landmarks. Following the rules
specified in the text, a white anchor (A) is placed on landmark
0. B: Maximum (MaxG) and minimum (MinG) gradients
compatible with the experimental data. C: Example of path to be
traced across the plot, for the same data set as in A. The steps
are represented as grey arrows.

PSE of the maximum possible gradient. Therefore,
given points ‘@’ (x;, p;) and ‘A’ of the steeper line
(X, p,), the PSE local estimate is:
PSE =, +0.5(0.5 p) (X, —X)
(p—p)
The approximate value of SD (of the
‘intermediate’ gradient) will be:

o=0171%7%)
P—P)
(b) No ‘@’ Points

The PSE is estimated as midway between the two
landmark locations where the step-change of p from

0to 1 (fromleft toright ‘ A’) occurs. Thus, if x_and
X are the abscissae of the two anchors * A’, the PSE
will equal (x_ + x3)/2. As for the SD, the same logic
of the ‘intermediate’ gradient is applied [see point
(@) above]. Therefore, SD = 0.171 | X, — X3 |-

(c) At least Two ‘@’ Points

Regression procedures such as Probit Analysis
(Finney, 1971) might be applied here to obtain PSE
and SD, with the use of appropriate computer
software. We offer instead a method that gives
good approximate solutions and, like the previous
ones (a) and (b), requires only a pocket calculator.
The general idea that gave rise to this method
exploits the fact that the PSE and the SD are,
respectively, the mean and the square root of the
variance of the distribution of the SMs. We will
use two general properties of these parameters, i.e.,
the fact that the mean is the sum of the products
between the single scores and their probabilities,
and the fact that the variance is the mean of the
square scores minus the square of the mean score.

The method works as follows. A path needs to
be traced across the plot representing the data (see
Figure 3C for an example). The path starts either
from the left ‘A’ or, if present, from the left ‘A’,
and ends either at the right ‘A’ or, if present, at the
right ‘*A’. The first step of the path is a vertical line
from the starting point up to the height of the first
‘®’; the second step is a horizontal line reaching the
‘®’. Then, the process is repeated: first a vertical
line is traced to reach the height of the next ‘@®’;
second, a horizontal line reaches the ‘@’ itself. This
process must be repeated until the right end of the
path (right ‘A’ or ‘A’) is reached. The path thus
consists of pairs of steps (the first of a pair is
vertical, the second horizontal).* The PSE is
estimated as follows. For each pair of steps the
height of the vertical step (positive when the step is
upward, 0 when it is null, negative when it is
downward) must be multiplied by the midpoint
value of the horizontal step. The sum of these
products will be the estimate of PSE. For deriving
SD, it is also necessary to compute the products
height of the vertical step x squared position of the
horizontal step. If G is the sum of these products,
then

D =G PSE?

Figure 5 reports an example of these
computations for obtaining PSE and SD.

General Formula for the PSE Confidence Interval

By means of a data simulation study, we could
see that a good approximation of a 95% confidence

“Note that the vertical step can be also null (this happens when two
consecutive ‘@’ are at a same height).
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ORN =(B—A)/54=

. CI(M) =[M—0.0882,/C+ D),

M+ 00882+ D))= [ovvveeeiims veenie 1.

IRN Ifmore than one ® : Trace the path across the plot, starting from the left A (orA) to the right A (orA), and compute:

Vertical step length V; t=+.] =—

Midpoint of Horizontal step (—), MH

Product V' x MH

Product V' x MH*

SD =\ G—PSE*= evvveeen

If there is only one e : Take the ® and the A joined by the steeper line, giving these points the coordinates A(x1.p1) and ®(x,.p,):
PSE =x,+0.5(0.5 —p)(x1 —=x2)/(p1— p2) = .

If there are no ® : PSE = the horizontal midpoint between the two A points =
SD = 0.171 times the horizontal distance between the two A points =

SD=0.171(x,=x,)/ (p—p,) =

R=0.3886 + 0.3964 (SD) + 0.118 (absolute value of PSE) + 39.64 (M ?) ,absolute value of M =

CI(PSE) = [PSE= R, PSE+R] = ccovvvvirvcccc+ eoorrrrrrr. 1
RLP| 0 1 2 3 4 5 6
e=0 e=0 e=0 e=0 e=0 e=0 e=0
/=0 /=0.139 f=0222 /=025 f=0222 /=0.139 /=0
0 p=1 p=1 p=1 p=1 p=1 p=1 p unknown
e=0.139 e=0.139 e=0.139 e¢=0.139 e=0.139 e¢=0.139 e¢=0.139
f=0 f=0.139 f=0222 =025 f=0.222 f=0.139 =0
1 p=1 p=0.833 p=08 p=075 p=0.666 p=0.5 p=0
e=0222 e=0222 e=0222 e=0.222 e=0.222 e=0222 e=0222
/=0 /=0.139 /=0222 /=025 f=0222 /=0.139 /=0
2 p=1 p=08 p=0.666 p=06 p=0.5 p=0.333 p=0
e=025 e=025 e= 025 e= 025 e= 025 e=025 e= 1025
f=0 f=0.139 f=0222 =025 f=0.222 f=0.139 =0
LS 3 p=1 p=075 p=06 p=05 p=04 p=025 p=0
e=0222 e=10.222 e=0.222 e=0.222 e=0.222 e=0222 e=0222
f=0 f=0.139 f=0222 =025 f=0.222 f=0.139 =0
4 p=1 p=0.666 p=05 p=04 p=0.333 p=02 p=0
e=0.139 e=0.139 e=0.139 e=0.139 e=0.139 e=0.139 e=0.139
/=0 f=0.139 f=0222 =025 f=0222 f=0.139 =0
5 p=1 p=05 p=0333 p=025 p=02 p=0.166 p=0
e=0 e=0 e=0 e=0 e=0 e=0 e=0
f=0 f=0.139 f=0222 =025 f=0.222 f=0.139 =0
6 p unknown p=0 p=0 p=0 p=0 p=0 p=0

Fig. 4 — Computation sheet for a single experimental session.

interval for PSE is obtained by applying the
following formula:

Olf3|(hﬁ W5 5+007D

. [0.6817+0.6954 SD +0.2071 | PSE | +69.54 | M [#3165+22662
U \S L

PSE+ i+

SMore precisely, we obtained intervals with an average confidence level
around 95.4%, and ranging from 86% to 100%. None of the confidence
levels obtained from each simulation was significantly lower than 95%.

The formula has as entries PSE, SD and M as
estimated from the data set; the new parameter S is
the number of testing sessions from which data
have been accumulated, each session having N = 6
repeats per stimulus per condition, as in Bisiach et
a.’s (1998a) procedure.

This formula gives 95% confidence intervals® if
(i) Bisiach et al.’s (1998a) stimuli have been used
and (ii) the assumptions of our mathematical model
hold. If more than one session have been
administered (S > 1), the formula gives 95%
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ORN M=(B —A)54= 0.259 ;: crm) = [M—00882C+ D). M+0.0882TC+ D)) =1 0.132 .0.386].
IRN [fmore than one  ; ‘Trace the path across the plot, starting from the left & (or&) to the right & (ora ), and compute:
Vertical step length 12 f=+.) =— [+0.5 [-0.33 [+0.434[ +0.4
Midpoint of Horizontal step (=), MFH | -2.5 |+2.5 | +10 [+22.5 Sum
Product I”x MH -1.25 |-0.83 | +4.34] +9 11.255= PSE|
Product I’ x MH® +3.125(-2.09 |+43.4|+202.5 246.938 =G
8D = G—rset = 10.966
If there is only one e : Take the ® and the A joined by the steeper line, giving these points the coordinates A(x21) and ®(x,.p,):
PSE=x,+ 0505 —p)x,—x)(pi—p2) = coccoocce. SD=01T1x = x ) (p—p)= ...
If there are no ® : PSE = the horizontal midpoint between the two & points = ...........
SD =0.171 times the horizontal distance between the two & points = ... ........
R=10.3886 + 0.3964 (SD) + 0.118 (absolute value of PSE) + 35.83 (M )/ absolute value of of = 7.417
CI(PSE) =|PSE—R.PSE+R] =] 3.838 .18.672 |

Fig. 5 — Example of PSE and M estimation. Grey numbers have been added to carry out the calculation. The PSE and its Cl are

also represented.

confidence intervals when the patient’s ‘true’ PSE,
SD and M have not varied across sessions. Thus, it
is advisable to administer further sessions in
consecutive days, or on the same day, shuffling the
order of the stimuli within each experimental
block, as otherwise the formula might
underestimate the width of the confidence intervals.

The formula has been obtained by simulating
data in the range of S from 1 to 3, of SD from 1 to
20 mm, of | M | from O to 0.99 and of | PSE | from
0 to 60 mm. Therefore, if data are obtained from
more than three sessions, or from patients with SDs
far higher than 20 mm, or with PSEs more
eccentric than 60 mm from the true centre, or with
M absolute values between 0.99 and 1 (all very rare
conditions), our formula might give confidence
intervals with an average level of confidence
different from 95%. The formula should still work
well if S, SD or PSE are beyond the above limits,
but we are less sure that it would work if | M | is
between 0.99 and 1. However, none of the 121 left

neglect patients tested by Bisiach et al. (1998a)
obtained an | M | higher than 0.99.

Smplified Versions of the Formula for S= 1,
S=2,S=3

Much simpler (approximate) versions of the
formula for CI(PSE) are available when S=1, S =
2,S=3

These can be worked out with a pocket
calculator and give intervals of the same average
confidence level as those obtained from the general
formula (95.4%).

When S = 1,

PSE + (0.3886 + 0.3964SD +0.118| PSE | +39.64M%| M )
When S = 2,

pog + H + 000630
1-IM|

x (0.2495 +0.25453D +0.0758 | PSE | +25.58|M F)
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When S = 3,

PSE+ QJF 0.01121,
1-IM|

x (0.2+0.2039SD +0.0607 | PSE | +19.88|M F)

Smplified Computation Sheet for the Single Session
(S=1)

If data have been obtained from a single session
as specified in Bisiach et al. (1998a), i.e.
administering N = 6 repeats per landmark location
per condition, the worksheet shown in Figure 4 can
be used to simplify the computation procedures.

Raw data should be transcribed on to the table
at the top of the worksheet. Stimulus landmark
locations are listed, from — 60 to + 60 mm. The
numbers of Left Shorter (LS, 0-6) and Right
Longer (RL, 0-6) responses should be inserted in
the first two rows, in the appropriate cells. The
third and fourth rows should then be completed
according to the values e and f specified in the table
at the bottom of the worksheet, using the specific
LS and RL values as entries.

The sums of the four rows should then be
computed, obtaining the values A, B, C and D
respectively. In the bottom table, the p values
corresponding to every LS-RL combination are
provided. These should be entered graphically in
the plot, applying the classification rules listed
above to obtain the two lateral anchors (of ‘A’ or
‘/\’ type) and, if present, the ‘@’ points. The
formulae and procedures for computing M and its
confidence interval CI(M), the PSE and its
confidence interval CI(PSE), and SD, are given
below the plot. As for PSE and SD, the different
formulae are reported for the three possible
circumstances (zero, one or more than one ‘@®’). An
example of application is shown in Figure 5.

APPENDIX B
GUESSING STRATEGY
Consequences of Guessing Behaviour

The impact of guessing behaviour on our
parameter PSE depends on whether the guessing
behaviour is complete, i.e. occurring on each and
every trial of the experiment, or partial, i.e.
affecting only a subset of the trials. When there is
complete guessing, the average estimate of PSE
will be 0, i.e,, no bias at al, irrespective of the real
PSE. Therefore, similarly to what PB would
suggest, the conclusion would be ‘no IRN’
although no information is really available about
the subject’s stimulus processing. On the other
hand, when the guessing behaviour is partial, the
PSE estimate will be on average correct (unbiased),
although more instable with respect to the case of a
subject who never guesses. By contrast, PB

underestimates the severity of an actual IRN in this
case of partial guessing.

As far as ORN is concerned, guessing
behaviour introduces a bias in the estimation of M
that depends on the nature of the guessing. While
ignoring the metric properties of the stimulus, the
subject can either guess the colour of the correct
response [i.e. give a ‘red’ or ‘black’ response by
chance, with probability independent of the
stimulus, see Bisiach et a.’s (19984) ‘Landmark-
V'], or guess the side of the correct response (i.e.
name the colour of, or point to, the right or the left
collinear segment by chance, with probability
independent of the stimulus). If the subject guesses
the colour, the M estimate will be either zero
(complete guessing) or biased towards O, i.e.
underestimating the degree of an actual ORN
(partial guessing). If the subject guesses the side,
the absolute value of the M score will be biased
towards 1. we will therefore have overestimates of
the degree of an actual ORN.

In summary, complete guessing behaviour
introduces a bias in the estimation of PSE, and
partial or complete guessing introduces biases in
the estimation of M. Fortunately, a criterion for the
detection of partial or complete guessing behaviour
is provided by our method.

Diagnostic Criterion for Guessing Strategy

A good means for detecting partial or complete
guessing is to consider the shallowness of the
cumulative normal curve (SD). Consider the
extreme case of a subject who guesses on each and
every trial. All of his p values would be around
0.5, so that the resulting cumulative curve would
be very shallow (SD virtualy infinite). Therefore,
the higher SD, the more likely it is that the subject
guessed at least on some trials. One possible
criterion for establishing a cut-off SD score for
guessing behaviour is the range of distribution of
the subjective midpoints (SMs) along the line. A
subject could be defined as guessing if fewer than
99% of the SMs (99% of the area under the
gaussian curve, see Figure 2B) lie within the
confines of the line. The highest SD value
corresponding to this situation is 34.94. Therefore,
if a subject shows an SD value higher than 34.94,
he should be considered as having guessed on at
least some trials, and the consequences of this
behaviour in terms of estimation biases (see above)
should be considered in the interpretation of the
results.

APPENDIX C

SoME THEORETICAL CONSIDERATIONS

It is important in the present context to bear in
mind the difference between mathematical and
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empirical relationships when any two measures are
compared across a neurological population. The
interesting question is always whether there is an
empirical relationship, so that inferences can
potentially be made about common underlying
mechanisms subserving performance on the two
tasks. If, however, there is a relationship for the
trivial reason of overlap between the two tasks
used to measure performance (e.g. some test items
are common to both tasks), then clearly one can
make no inferences about the underlying deficits.
In other words, if there is mathematical
dependence between the two scores, it will be
impossible to decide whether an experimental
correlation between them in a population of
patients is due to their mathematical link, or to real
communalities between the neuropsychological
deficits they measure. If, on the other hand, the
two scores are mathematically independent, any
experimental correlation will be interpretable in
neuropsychological terms.

For instance, the relationship between
comprehension and working memory disorders can
be investigated administering the Token test and
the Digit Span test. The scores on the two tasks are
separate: no information from Token test
performance is used to compute the Digit Span
score, nor vice versa. Therefore in the present

sense, the scores are mathematically independent.®
Such mathematical independence alows the
attribution of any experimental correlation between
the two scores to a real relationship between the
two deficits, e.g., a positive correlation might be
found because successful comprehension needs the
input sentence to be stored in working memory.

The general point is that mathematical
independence between scores is a nhecessary
condition to study whether there is empirical
dependence or independence between any two
deficits. Such mathematical independence does
not (and cannot) require any assumption about
the empirical relation between the deficits — on
the contrary it is a prerequisite to study that
relation.

Just as the Token test and Digit Span provide
mathematically independent scores that do not
assume (in)dependence between comprehension
and working memory disorders, our PSE and
M are mathematically independent scores that
do not assume (in)dependence between IRN and
ORN.

8If two scores are derived from different data sets, as are Token and Digit
Span, this implies that they are mathematically independent; but not vice
versa: different scores from a same data set can be mathematically
dependent (as PB and RB) or independent (as PSE and M).



